

Probing of ABCStar Readout ASICs Through a Semiconductor Test Industry Partnership for use in the ATLAS ITk Strips Tracker

Bryce Norman

CAP Congress - 2023

The LHC and ATLAS

- The Large Hadron Collider (LHC) is the world's largest particle collider
 - Protons accelerated around 27 km ring and collided at center of mass energy of 13.6 TeV
- ATLAS is the largest general-purpose detector on the LHC
 - Helped discover the Higgs boson in 2012
 - Cylindrical detector consisting of many subsystems wrapped in layers
- ATLAS is currently collecting data during LHC Run 3

New Inner Tracker (ITk) Upgrade

- The LHC is undergoing upgrades to become the High Luminosity LHC (HL-LHC) beginning in 2026
- ITk will replace the current ATLAS Inner Detector
 - · Inner Detector is nearing end of life
 - HL-LHC will have over 5 times more collisions than the LHC
- ITk will be an all-silicon detector

ABCStar ASIC

- ATLAS Binary Chip Star Version (ABCStar) is the readout ASIC for the ITk strip sensors
 - 8.087 mm x 7.150 mm
 - 130 nm CMOS technology
 - Provides signal processing for 256 silicon strips
 - Binary readout architecture
 - Radiation hard design with triplication

 Input signals from all 256 channels are amplified, shaped, discriminated then readout

University

ABCStar Wafer Probing

- Analog and digital circuitry of over 350,000 ASICs needs to be thoroughly tested to be used in ITk
 - Half of wafer probing is being done at Rutherford Appleton Laboratories (RAL) with custom equipment in research setting
 - Carleton partnered with DA-Integrated to probe other half of wafers
- DA-Integrated is a global provider of integrated circuit development, production testing and custom ASIC services
 - Located ~25-minute drive from Carleton University
 - Capability to test over 1 million parts on site in a year
 - No custom hardware was needed to interface with ABCStar wafers
 - Voltages and frequencies were easily attainable on their testers
- Worked with test engineers at DA-Integrated to develop test routine for ABCStar using standard industry probing equipment
 - Majority of test implementation for final version of ABCStar was done remotely between DA-Integrated and Carleton

DA-Integrated Wafer Testing System

- Electroglas 4090μ and TEL probers
 - Automated wafer swapping and alignment with up to 25 wafers
 - Programmable power supplies with readout (PSUs)
 - Parametric measurement units (PMUs) to source/sink and measure any voltage or current on pads
- Tests driven by C++ code
- "Shmoo" analysis capabilities

Test Results

- ABCStar test flow at DA-Integrated
 - Measure power supplies as ASIC functionality is brought up in stages
 - Verify communication with the chip
 - Tune chip to desired voltage
 - Burn eFuses for chip identification
 - Tune internal DACs
 - Measure gain and noise from all 256 channels
 - Test the digital logic of the chip

Mean gain per ASIC across four different lots of wafers

failing (X) ASICs

Digital Tests

- Tests were developed by engineers at CERN to virtually test digital logic on a simulation of the ABCStar
 - Used Cadence Xcelium software to generate files containing inputs to chip and expected output from chip for each digital test
 - Engineers at DA-Integrated converted these files into a format for probing on physical ABCStar chips
- These tests were designed to run on a simulation of ABCStar, not a physical chip
 - Needed to adjust tests that accessed internal properties of the chip not available to the tester
- Wanted ability to run digital tests at different voltages
 - · Voltage of chip was hard coded in test
 - Developed code to dynamically change the bit stream sent to each ASIC to change the voltage settings

SRAM Hit Loss

- Discovered that ABCStar ASICs could experience hit loss if digital voltage or duty cycle was too low during probing
 - When reading out physics data some hits were missing in readout compared to expected good stream for "A02" digital test
 - Hit loss = missing physics data
 - Localized the issue to bit flips in the on-chip SRAMs
- Needed to determine relationship between digital supply voltage, duty cycle and SRAM hit loss
 - DA-Integrated has precise control over clock frequencies and edge relationships
 - Prober can quickly generate shmoo plots

Duty cycle is ratio of high time to low time

Decreasing Digital Voltage →

Shmoo plot showing pass/fail result for A02 test with different supplied duty cycles and voltages for an ASIC

SRAM Investigation

- Needed to determine criteria for passing ABCStar chips to avoid hit loss in ITk while maintaining high wafer yield
 - Maximum operating voltage is limited by supply voltage
 - Duty cycle to ABCStar is set by its control chip
- Performed SRAM test at different voltages and duty cycles across multiple wafers
 - Decided that ASICs must have zero hit loss with 1.25 V digital voltage and 49/51 duty cycle

Lowest voltage where A02 (SRAM test) passes for a wafer

Wafer map with lowest supplied duty cycle for a passing SRAM test

Site Cross-Check

- Two wafers were probed at RAL and DA-Integrated for site verification
- Die classification was compared to ensure that results are consistent between sites
 - 99.8% agreement after accounting for differences in test coverage and limits (have since been rectified)
 - Remaining 2 dice were on the edge of a test limit
 - Second cross-check occurring soon
- DA-Integrated achieved the same test coverage with better throughput
 - DA: ~2 hours/wafer, automated wafer swapping (probe lot in weekend)
 - RAL: ~4 hours/wafer, manual loading (average 2 wafers per day)

Conclusion

- Partnered with a commercial ASIC testing company to probe ABCStar ASICs for the ATLAS ITk upgrade
 - Currently in production probing with over one third of ASICs probed
 - Average yield of 87.4% through production probing

ABCStar	Manufactured	Probed	Diced
Number	269780	143350	62584
%	77.1%	41.0%	20.9%

- Overcame methodological differences between industry and research facilities without compromising test coverage
 - Achieved 99.8% consistency in classification between probing sites
- Leveraged probing capabilities at DA-Integrated to investigate ABCStar SRAM behaviour
- Opened the door for future collaboration with commercial ASIC testing vendors in high energy physics experiments
 - This could be the future for large scale physics experiments

Backup

Probing: Commercial vs Research

- RAL (Research)
 - Custom probing setup integrated with custom software
 - Can probe a wafer of 470 ASICs in ~4 hours
 - Manual wafer swapping (10-15 min)
 - Unlimited access to probing setup allowing for quicker debugging and R&D when necessary

- DA-Integrated (Commercial)
 - Industry standard wafer probing equipment
 - Can probe a wafer of 470 ASICs in ~2 hours
 - Automated wafer swapping, can probe 25 wafers over weekend
 - Limited time windows for R&D
 - Work with test engineers to implement probing tests

ABCStar Production Status

Currently in production probing phase

ABCStar	Manufactured	Probed	Diced
Number	269780	143350	62584
%	77.1%	41.0%	20.9%

Foundry lot	Probing standard used		Wafers		% yield cat A
0XDXB00000	Production	24	20	4	80.5%
OZPRB00000	Production	21	. 21	. 0	88.1%
107RB00000	Production	25	2	23	71.5%
110YB00000	Production	22	. 22	. 0	89.9%
11YFB00000	Production	19	19	0	86.5%
11YGB00000	Production	23	23	0	91.8%
11YHB00000	Production	22	. 0	22	
12YVB00000	Production	22	. 22	. 0	85.6%
144YB00000	Production	23	0	23	
15M2B00000	Production	23	23	0	90.9%
17S2B00000	Production	25	25	0	85.7%
183KB00000	Production	23	0	23	
2YEWB020000	Production	2	. 2	. 0	80.3%
2YRKB00000	Production	25	2	23	90.5%
2ZKTB00000	Production	25	0	25	
3024B00000	Production	24	2	22	87.8%
31VWB00000	Production	25	0	25	
33YXB00000	Production	25	0	25	
34Q7B00000	Production	25	2	23	89.6%
35C1B00000	Production	25	0	25	
361CB00000	Production	24	2	22	92.0%