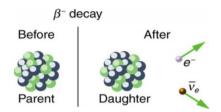
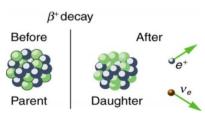
High Precision Half-Life Measurements for the Superallowed Fermi β^+ Emitter ¹⁴O

Eric Gyabeng Fuakve

Nuclear β **Decay**


Two Types: Beta Minus Decay, Beta Plus Decay


• **Beta Minus Decay:** Conversion of neutron into proton.

$${}_Z^A X_N \rightarrow {}_{Z+1}^A Y_{N-1} + e^- + \bar{\nu}_e$$

 Beta Plus Decay: Conversion of a proton into neutron

$${}_{Z}^{A}X_{N} \rightarrow {}_{Z-1}^{A}W_{N+1} + e^{+} + \nu_{e}$$

Nuclear β **Decay**

- Beta Decay from parent nuclei can populate several daughter states
- Momentum conservation & selection rules:

$$\overrightarrow{J_P} = \overrightarrow{J_D} + \overrightarrow{L} + \overrightarrow{S} \qquad \qquad \pi_P = \pi_D \left(-1\right)^L$$

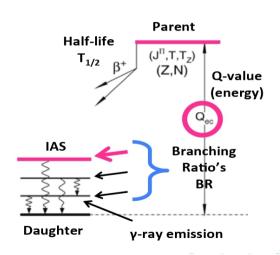
Momentum

Parity

- Allowed decays L = 0
- Forbidden decays $L = 1, 2, 3, \dots$
- Fermi decays S = 0

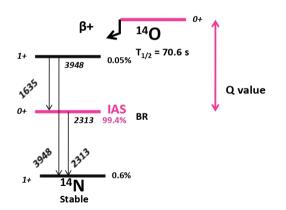
&

Gamow-Teller decays S = 1

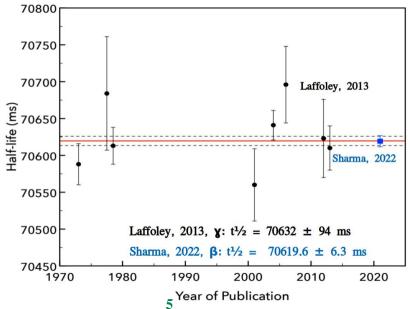


Superallowed Fermi Beta Decay

Superallowed Fermi β decays are beta decays between isobaric analogue states.


- $L = 0, \Delta \pi = \text{no}, S = 0$
- Allowed and pure Fermi decay (no GT)
- States have identical wave functions

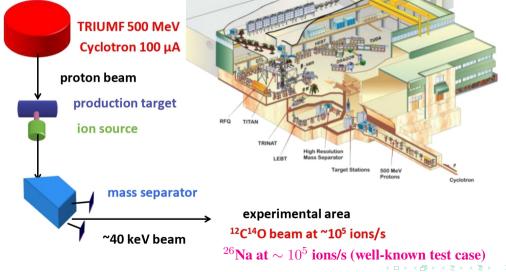
Isospin symmetry (neutrons = protons)


Key Quantities to be Measured

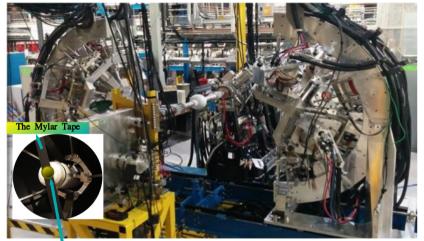
- **1** Half life $T_{\frac{1}{2}}$ of the parent state (focus of this work).
- 2 Total transition energy Q value
- 3 Branching ratio (BR) to the state of interest

- These quantities are combined into the ft value of the β transition
- f = statistical rate function, depends on Q value
- t = partial half life , depends on $T_{\frac{1}{2}}$ and the branching ratio.

Previous Half-Life measurements of ¹⁴O


Our Goal:

• To provide half-life measurement for 14 O from γ -ray counting that can be compared to the recent high precision β counting result (Sharma, 2022).


2 To search for any possible systematic effects between β and γ counting techniques. (eg. 34 Ar experiment scheduled in June, 2023 at TRIUMF, Vancouver).

3 To place further constraints on possible extensions of the Standard Model: ft value precision $\leq 0.1\% \rightarrow \beta$ decay half-life precision $\leq 0.05\%$.

TRIUMF ISAC (Isotope Separator and Accelerator)

γ Counting — The GRIFFIN Spectrometer

- > The radioactive beam is then implanted into the tape.
- > Spherical array of 16 Clover detectors each consists of 4 HPGe Crystals
- > ~9.1% photopeak efficiency at 1.3 MeV

Half-Life of ²⁶Na

 We performed half-life measurement of ²⁶Na as a first experimental test of GRIFFIN for high-precision work.

 Developed pile-up fitting and correction techniques in GRIFFIN.

• \sim 99% of all β decays yield the 1809 keV γ -ray (Grinyer, 2008).

Decay Scheme of ²⁶Na

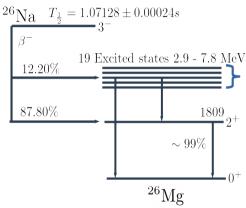


Figure 1: A simplified 26 Na β^- decay scheme to the stable daughter 26 Mg.

Half-Life of ²⁶Na

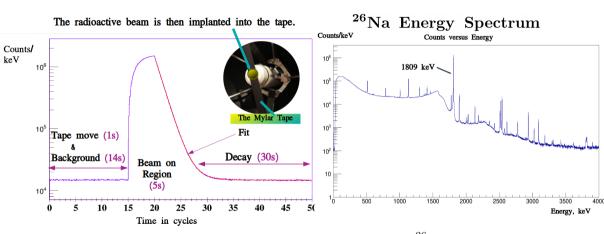
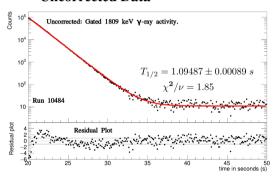



Figure 2: Left: Data collected in cycles and Right: γ -ray singles spectrum for 26 Na with all the trigger events for a single run (40 mins)

Half-Life Analysis

²⁶Na Gated 1809keV Activity with total decay time of 30s.

Uncorrected Data

2nd order pile-up + dt correction

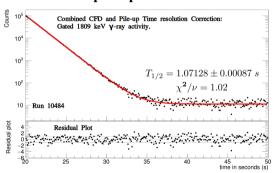
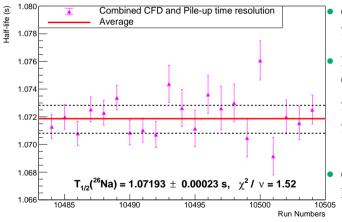



Figure 3: Non-corrected decay curve (left) and Combined CFD and Pile-up time resolution correction decay curve(right) obtained from a single run following a gate on the 1809-keV transition in ²⁶Mg.

Half-Life Analysis: Previous works on ²⁶Na

Deduced half-life of ²⁶ Na versus all the run numbers.

• Current Result (γ -counting): $T_{\frac{1}{2}}(^{26}\text{Na}) = 1.07193 \pm 0.00023 \text{ s}$

Previous Result: Grinyer et al. (2005, 2007)

$$\begin{split} &T_{\frac{1}{2}}(^{26}\text{Na},\,\beta) = 1.07128 \pm 0.00025 \text{ s} \\ &T_{\frac{1}{2}}(^{26}\text{Na},\,\gamma) = 1.07167 \pm 0.00055 \text{ s} \end{split}$$

Good agreement with previous high-precision measurements.

1D γ -ray singles spectrum for 14 O

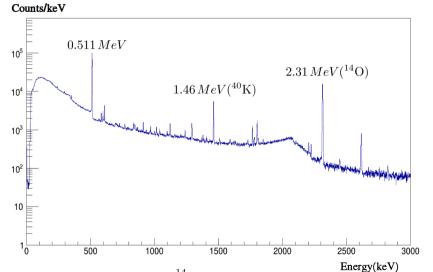


Figure 4: γ -ray singles spectrum for ¹⁴O with all the trigger events for a single run (22 mins).

Energy gate on the 2.3 MeV photopeak in ¹⁴N

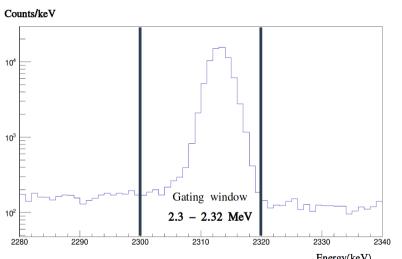


Figure 5: Typical zoomed in region (2280 - 2340 keV) from the γ -ray singles spectrum of 14 O.

Looking at the Pile Up and Single Events Spectra

Not Pile-up Events (blue) & Pile up Events(Red).

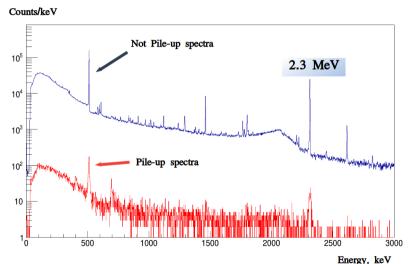


Figure 6: ¹⁴O Energy spectra to distinguish between not pile-up and pile-up events.

Half-Life Analysis: ¹⁴O Gated 2.3MeV Activity

Preliminary Results: ¹⁴O Gated 2.3MeV Activity with total decay time of 1280s.

Uncorrected Data

1st order pile-up + dt correction

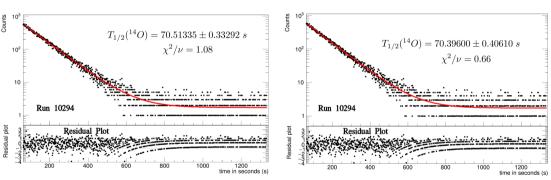


Figure 7: Non-corrected decay curve (left) and 1st order pile-up and dead-time (dt) correction decay curve(right) obtained from a single run following a gate on the 2.3-MeV transition in ¹⁴N.

Half-Life Analysis: ¹⁴O Gated 2.3MeV Activity

Preliminary Results: Half-life of ¹⁴O versus run numbers.

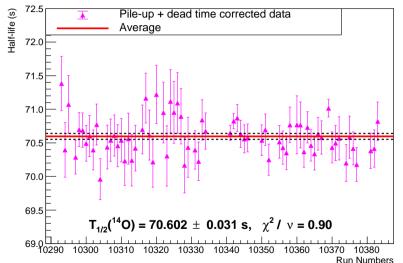


Figure 8: Pile-up and dead time correction of the deduced Half life's versus run numbers.

Summary and Future Work

- We performed a half-life measurement of ²⁶Na as a first experimental test of GRIFFIN for high-precision work.
- 2 The Half life for the 2.3MeV activity from $^{14}{\rm O}$ has been determined and was found to be $T_{\frac{1}{2}}({\rm avg})$ = 70.602 \pm 0.031 s.
- 3 Sharma et al. (2022) measured the high-precision half-life of $^{14}{\rm O}$ via β -counting. The half-life of $^{14}{\rm O}$ was determined to be $T_{\frac{1}{2}}$ = 70.6196 \pm 0.0063 s.
- 4 At this time, the analysis is in its preliminary stages and further extensive work is required in the upcoming weeks.
- **5** Future Work: Studies of 34 Ar as a superallowed Fermi β decay experiment scheduled in June, 2023 at TRIUMF, Vancouver.

Collaborators & References

COLLABORATORS Thank you very much for your support!

S. Sharma¹, G.F. Grinyer^{1a}, G.C. Ball², J.R. Leslie³, C.E. Svensson⁴, F.A. Ali^{4b}, C. Andreoiu⁵, N. Bernier^{2,6c} S.S. Bhattacharjee², V. Bildstein⁴, C. Burbadge⁴, R. Caballero-Folch², R. Coleman⁴, A. Diaz Varela⁴, M.R. Dunlop⁴, R. Dunlop⁴, A.B. Garnsworthy², E. Gyabeng Fuakye¹, G.M. Huber¹, B. Jigmeddorj⁴, K. Kapoor¹, A.T. Laffoley⁴, K.G. Leach, J. Long, A.D. MacLean, C.R. Natzke, B. Olaizola, A.J. Radich, N. Saei, J.T. Smallcombe, A. Talebitaher¹, K. Whitmore⁵, and T. Zidar⁴

- Department of Physics, University of Regina, Regina, SK S4S 0A2, Canada ² TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Physics, Oueen's University, Kingston, ON K7L 3N6, Canada
- Department of Physics, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 186, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Physics, Colorado School of Mines, Golden, CO 80401, USA
- ⁸ Department of Physics, University of Notre Dame, Notre Dame, IN 46556, USA
- Grinyer, G. (2008). High-precision half-life measurements for superallowed Fermi β decays (Doctoral dissertation).
- Sharma, S., Grinyer, G. F., Ball, G. C., Leslie, J. R., Svensson, C. E., Ali, F. A., ... & Zidar, T. (2022). High-precision half-life determination of 14 O via direct β counting. The European Physical Journal A, 58(5), 83.
- Laffoley, A. T., Syensson, C. E., Andreoju, C., Austin, R. A. E., Ball, G. C., Blank, B., ... Unsworth, C. (2013). High-precision half-life measurements for the superallowed Fermi β^+ emitter 14 O. Physical Review C. 88(1), 015501.
- Grinyer, G. F., Svensson, C. E., Andreoiu, C., Andreyev, A. N., Austin, R. A. E., Ball, G. C., ... & Zganjar, E. F. (2007). Pile-up corrections for high-precision superallowed β decay half-life measurements via γ -ray photopeak counting.

Regina GRIFFIN Group

FACULTY OF GRADUATE STUDIES & RESEARCH

****TRIUMF**

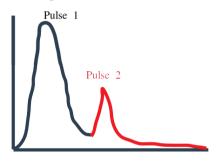
GRIFFIN

A.B. Garnsworthy et al.,

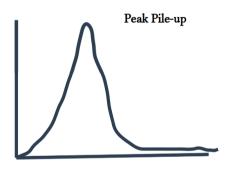
PHOTO CREDIT: SHAFAKAT AR IFEEN

L to R: J. Liu, Dr. Grinyer, N. Saei, D. Shah, E. Gyabeng Fuakye (me!)

efk382uregina.ca GitHub egfuakye-resources08 egfuakyeresources08



Any Questions?


Backup Slides

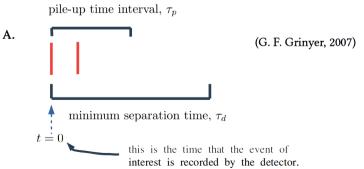
Detector Pulse pile-up

Tail Pile-up

First order pulse pile-up where pulse 2 is riding on the tail of pulse 1.

If the pulses **are very close in time**, the system will simply record the two pulses as a single event with a **combined pulse amplitude**.

The number of pile-up events depend strongly on the count rate of the system.

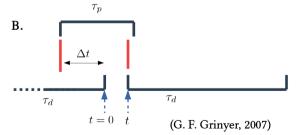

23

Detector Pulse pile-up

Common types of Pile-up

Post-piled-up

Post pile-up is defined as the probability that the pile-up is caused by events arriving after the events of interest has been recorded.



Detector Pulse pile-up

Common Types of Pile-up

II. Pre-piled-up

The possibility that the event of interest is piled-up by an event that came before, in a process defined as "pre-pile-up"

1st Order Pile-up Corrections

Step-by-Step Correction

1. Deadfraction Correction

$$N_i^{'} = \frac{N_i}{1 - D_i}$$

$D_i = \text{Dead fraction}$

Deadtime is the total period of time during which hit detection cannot be processed even if they are present.

2. 1st Order Pile-up Correction

$$N_i^{"} = \frac{N_i^{'}}{1 - P_i}$$

$$N_{i}^{"} = \frac{N_{i}^{'}}{1 - P_{i}}$$
 $P_{i} = \frac{\text{Pile-up Events}}{\text{All Events}}$

$$N_i^{''} = rac{N_i}{(1-D_i) imes (1-P_i)} \star$$
 rate dependent corrections

Higher Order Pile-up Corrections

Bin-by-bin pile-up correction

1. Deadfraction Correction

$$D_i = \text{Dead fraction}$$

$$N_i^{'} = \frac{N_i}{1 - D_i}$$

Deadtime is the total period of time during which hit detection cannot be processed even if they are present.

2. Higher Order Pile-up Corrections

RATE DEPENDENT CORRECTIONS

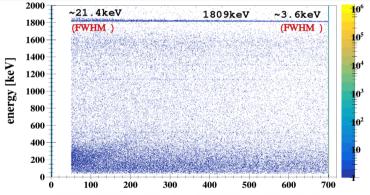
$$N_i^{"} = \frac{N_i}{(1 - D_i) \times (1 - P_{\text{fit-total}})}$$

Higher Order Pile-up Corrections

Analytical Expressions by (G. F. Grinyer, 2007)

$$P = 1 - e^{-(2-a_4)x} \left[e^{a_4x} + (1-a_4)x \right]$$
 1

$$P = 1 - e^{-2x}(1 + \alpha x)$$


$$P = \epsilon_p \left[1 - e^{-2x} (1+x) \right]$$

The probability of pile up with a **non zero time resolution**, **CFD** and **detection efficiency** in 1, 2 and 3 respectively.

$$P_{\text{fit-total}} = a_6 \left(1 - e^{-(2-a_4)x} \left[e^{a_4x} + a_5(1-a_4)x \right] \right)$$
 4

Dead-time and Detector Pulse Pile-up Corrections

Signal pile-up occurs when more than one energy deposition from different physics events is present in a detector element during the processing time of the initial interaction.

KValue, $\Delta t_{\rm SD}$: relative time difference between two events

One can clearly see the dependence of the energy resolution on the k-value. The energy resolution worsens with decreasing integration length as expected and vice versa.

1st Order Pile-up Corrections

1. Deadfraction Correction

$$N_i^{'} = \frac{N_i}{1 - D_i}$$

 $D_i = \text{Dead fraction}$

2. 1st Order Pile-up Correction

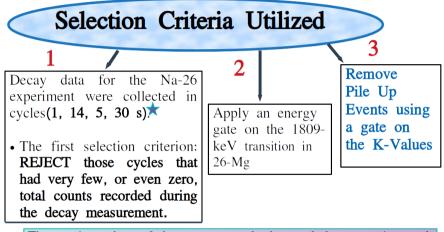
$$N_i^{"} = \frac{N_i^{'}}{1 - P_i}$$

$$P_i = \frac{\text{Pile-up Events}}{\text{All Events}}$$
0.78%

$$N_i^{''} = \frac{N_i}{(1-D_i) \times (1-P_i)} \, \bigstar$$
 rate dependent corrections

Future Work

Rate-Dependent Refinements


Trigger-Energy Threshold

• Corrects for **pile-up** caused by sub threshold energy events.

Pile-up Time Resolution

• Corrects for **pile-up** events not resolved (in time) by the **pile-up circuitry**.

Data Selection Criteria - Previous works on ²⁶Na

The precise values of the tape move, background, beam-on time and decay measurement were varied on a **run-by-run basis**.