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TRIUMF Ultracold Advanced Neutron @'
(TUCAN) Source TUCAN

¢ Concept: neutron
* Use superfluid helium (He-ll) to convert cold Epaimental o S N temperature  velocity
neutrons into ultracold neutrons. x
e Couple the He-ll directly to a spallation source of UCN 5 e

3 mK
fnelrtrons and cold moderators that can be optimized "
ully.

* Transport UCN to a room-temperature neutron EDM by 500m/s
experiment located farther away from the neutron
source and cryogenic systems. - / —
* We have been operating this system first at RCNP — Y MEaN Limis
Osaka, then at TRIUMF. We are now completing %’%} S
a new upgrade, scaling up the previous system I —
with several key improvements to reach world- PO spallation PR <004 L0

reaction

record UCN performance.

* A major part of this upgrade is a new liquid D,
cold neutron moderator.



UCN production anc

 Production:
* IncidentCN @ 1 meV

excites one phonon
Golub and Pendlebury, 1975, 1977

* Multiphonon excitation
give additional production.

* Losses:

* Loss rate dominated by 2-
phonon upscattering ~ T’

* T=11Kgives T, =64s
* We must keep the superfluid

much colder than T,

Minimize losses, heat.

Maximize 1 meV neutrons;
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How to cool neutrons from 1 MeV to 1 meV?

* It is easy to cool neutrons from 1 MeV to 1/40 eV = 25
meV. Let them bounce off nuclei at room temperature

T =300 K.
e e.g. a neutron moderator based on hydrogen
* Neutrons scatter ogf protons elastically with o(E) = const. _—
Their mfp is £5 = — y \\ o N%N\I,’phonon
 After N collisions (E)y = 1? E,, so in order to reach 25 He-[
meV, you need about 25 colfisions. -
. P = \2 : T liquid D
e Assuming random walk (D<) = (fs) N; D is roughly the _® z
thickness of material needed to thermalize. o / o
* If you want colder neutrons, just use a colder material,  target | ® o B &
like liquid hydrogen! Then T =20 K or <E> =2 meV. /@} &,
* |In general, light materials that don’t absorb neutrons """ spaiiation

reaction

are best thermal moderators.

Deuterium captures fewer neutrons, and as a result
there is less gamma heating.




— 300K
80K

— 20K

== 1 meV

Why LD,?
Maxwell-Boltzmann energy
distribution (neutrons in thermal
equilibrium with a material at
temperature T)

* Relative to LH,:

e The scattering cross-section is smaller (bad)

* The absorption cross-section is MUCH smaller
(great!) leading to fewer losses and less gamma 51
heating of the nearby superfluid.
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* No problem with the oxygen in D,0.

* Crystal structure makes D,0 vibrate, even at low temperatures. In previous
experiments, we deduced that T = 80 K for neutrons in much colder D,0.

* Burping is a problem for D,0. Progressive radiation damage to the crystal stores
energy eventually leading to a catastrophic warm up.

* Issues for LD,:
e Cryogenics, safety: engineering!



Neutron production and - 0
heat load requirements o

Shielding penetration §

Connection
to cryostat

Heat load (W)

Volume (L) max. average

UCN converter 27 8.1 2.8
Liquid deuterium 125 63 21
Heavy water 630 430 150

W. Schreyer, et al., NIM A 959 (2020) 163525. -
0" 10° 107 10°  10% 107 10

* Heat load to LD2 is 60 W instantaneously. Energy (MeV)



Cold

ow to keep it co

D, thermosypho
./To Ballast

Cryocooler + HEX

d?
n (natural circulation system)

* Features: single-phase, no
moving parts
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- Distance along thermosyphon loop (m)
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current (inst.) Time-dependent thermodynamic model

by Kiera Augusto and Shawn Stargardter



Construction Status

2219 Aluminum Domes

* Innermost vessel “Wall 1”
completed (it has even been
tested with ultracold neutrons!)

* Now preparing and assembling
the layers of the other vessels;
the next layer to be assembled is
the LD, layer.

“Wall 1” in kapton super-insulation, Thermal shock tests with LN2

all sensors installed




LD2 Cryostat — C. Marshall, et al. (TRIUMF)

- Expert review of the LD2 system - . o oS
Completed Oct 2022. I e et

- Detailed drawings are now complete. ; : =

- Many parts starting to come together.
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Summary and final thoughts

* The TUCAN source needs a large flux of 1 meV neutrons, so that they
can downscatter in superfluid helium and become ultracold.

* An LD, moderator at 20 K has been optimized to provide the 1 meV
neutrons.

* The system relies on a thermosyphon design to cool the LD,.

* The technical design of the LD, moderator is nearing completion, with
the component pieces (cryostat, heat exchanger, purifier, ...) being
prepared for construction.

* The LD, system will be completed in 2024.



Thank youl!

Collaboration meeting January 2023

-
- oo -
N b —

1 R - . > <
- 1 O j——" - = =
— - — - e -

w b

\ —
= —~ = " -~
- ’







TUCAN source and EDM Experiment (‘@3’

TUCAN

* Enable search for neutron EDM with 1 x 1027 ecm precision.

EDM experiment
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View of future facility at TRIUMF 14



Horizontal source upgrade

He-Il cryostat (tested in

I Shielding
Japan, at TRIUMF)

LD, cryostat (desighed)ﬁ $

Superconducting polarizer
(previous project, Japan)

Cryo-connectio
3He-*He heat e

15



Horizontal s

3He pumping

IP He supply

Heaters
© Temp. sensors (cernox)




TUCAN Source Upgrade Concept and Goals

* LD, moderator
* increase cold neutron flux at 1 meV
(X 2.5)
Helium Cryostat * Helium Cryostat with high cooling power
 production volume ( X 3)
* proton beam power (X 50)
+ 0.5kW ->20 kW
|l] * heat load on superfluid : 8.1 W
Radiation L \olurme * include heat deposit on vessel
I shige ‘ : | » superfluid helium temperature ( X 1/3)
| e T * Then = 1.2 K (0.8 K@RCNP)
gl |

A Superfluid HeHun . . . L
Heat Exchanger | I Storage lifetime : ~ 30 sec

LD, Cryostat

3He pumping

liquid 3He

UCN

20 K Heavy Water

oS ion Target » Estimated source performance
* production rate: 1.4 x 107 UCN/s
* UCN density
* 6 X103 UCN/cm3 @ production
« ~220 UCN/cm3 @ measurement

proton beam (20 kW

17



TUCAN

nEDM spectrometer

superconducting magnet

A i

B, coil
EDM precession chamber

"
"

! )

HEX 1
UCN production volume
tungsten target

UCN spin analyzers
magnetically shielded room

18



TUCAN Sensitivity Estimate

UCN production rate 1.4 X 107 UCN/sec Compare to typ 15,000 UCN
T T——— 220 pol. UCN/cm 14V UCN detected at previous best expt.
caded nto EEM €8 plets SR (ILL/PSI), and 121,000 UCN

UCN detected at end of cycle 23 pol. UCN/cm3 1.4M UCN projected for n2EDM
S. Sidhu, et al. arXiv:2212.04958 N. Ayres, et al. arXiv:2101.08730
h E =12.5 kV/cm
Ogq = t.=188s 04 =2x 102 ecm/cycle
2aEt VN a =0.6 (visibility)

To reach statistical sensitivity of o, =1 X 10%” ecm
400 days of running required




