

Electron Detectors for the MOLLER Experiment

CAP 2023

Nafis Niloy

Kristofer Isaak

Shefali Prabhakar

Dr. Jie Pan

Dr. Michael Gericke

Physics and Astronomy, University of Manitoba

Overview

- The MOLLER Experiment
- Main Integrating Detectors
- Compton Polarimeter
- HVMAPS
- HVMAPS for the Main Detectors
- HVMAPS for the Compton Polarimeter

Key points of MOLLER

Measurements:

- A_{PV} is due to EM and weak neutral currents
- Measure A_{PV} in Moller scattering to an uncertainty of 0.8 ppb
- Weak charge of the electron (0.0435) to within 2.4%
- Weak mixing angle to ± 0.00028
- Probe into possible new physics beyond the Standard Model

- Scheduled to begin in 2025
- Conducted in Hall A of JLab, Virginia
- Will use JLab's CEBAF, with 1920 Hz helicity flip rate
- CEBAF produces a longitudinally polarized electron beam at 11 GeV with 65 μA beam current

MOLLER Experimental Setup

$$A_{meas} = Pe\left(f_{p}A_{PV} + \sum_{b} A_{b}f_{b}\right) + Ab_{eam} + Ai_{nst}$$

$$A_{PV} = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-} = \left[mE \frac{G_F}{\sqrt{2}\pi\alpha} \frac{4\sin^2\theta}{(3 + \cos^2\theta)^2} \right] Q_W^e$$

Parameter	Value
Incoming electron Energy, E [GeV]	≈ 11.0
Scattered electron Energy, E' [GeV]	2.0-9.0
Scattered angle, θ_{lab} [mRad]	5-19
$< Q^2 > [GeV]$	0.0058
Max. beam current $[\mu A]$	70
Cross section scatter area, σ [μ barn]	≈ 60
Møller event rate @ 65 μ A [GHz]	134
Beam polarization P_{beam}	$\approx 90\%$
Measured A_{PV} [ppb]	32
$\delta(\sin^2\theta_W)_{stat}$	0.00023

Scattered Electron Profile

Back

Main Detector Segmentation

Beam direction along z-axis

MELLER

Recalling the Asymmetry Measured by MOLLER

$$A_{meas} = P_e \left(f_p A_{PV} + \sum_b A_b f_b \right) + A_{beam} + A_{inst}$$

Beam Polarization

- CEBAF produces a highly polarized longitudinally polarized electron beam at 11 GeV with 65 μA beam current
- For MOLLER, beam helicity flip rates of 1.92kHz will be needed
- Three polarimeters present: Mott, Moller and Compton polarimeters

The experiment requires the measurement of the polarization of the electron beam to better than 90 \pm 0.5 % in order to meet experimental goals

Compton Polarimetry

$$n^+ \longrightarrow \vec{k}_e \xrightarrow{\vec{S}_e} \vec{S}_{\gamma}$$

$$n^- \longrightarrow \vec{k}_e \stackrel{\vec{S}_e}{\longrightarrow} \vec{k}_{\gamma}$$

$$A_{exp} = \frac{n^+ - n^-}{n^+ + n^-} = P_{\gamma} P_e A_l$$
 $P_e = \frac{A_{exp}}{P_{\gamma} A_l}$

- A_{exp} : Experimental asymmetry measured from detectors
- P_e : Electron polarization
- P_{γ} : Photon polarization
- A_l : Theoretical Compton asymmetry (known)

Compton Polarimeter

- Deflection at HVMAPS detectors is used to measure beam polarization
- Electron loses momentum to photon via. Compton scattering
- Higher photon energy means lower electron energy
- Greater loss of electron energy means greater bend radius by dipole D3:

$$r = \frac{\gamma vm}{Be} = \frac{p}{Be}, \qquad \gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

 Uses 4 planes of HVMAPS (3 per plane) to measure electron deflection from primary beam

Need for electron detectors for MOLLER

Main Detectors

- Electron detectors needed to monitor event profile in the main Moller region at given beam currents
- Also used to simultaneously observe the evolution of the beam profile as beam currents change
- Can be used as a tracking detector on the Ring-5 plane as well

Compton Polarimeter

- Developing new electron detectors in parallel with diamond-strip detectors
- Need high (spatial) resolution electron detectors to accurately measure deviation of Compton-scattered electrons compared to un-scattered electrons
- New detectors may replace/complement existing diamond-strip detectors

High Voltage Monolithic Active Pixel Sensors (HVMAPS)

- Based on CMOS technology
- Monolithic pixel sensors: sensor and readout ASICs are integrated on the same chip (as opposed to hybrid sensors, where they are two separate layers)
- Particle detection, corresponding signal generation, amplification and signal processing are all done on the same die
- Pixels can be fabricated to be very small, allowing for high spatial resolutions for particle tracking
- Multiple chips can be combined to form a detector plane
- Can be manufactured to be very thin, so low material budget
- High radiation tolerances

11

Source: Weber, Alena Larissa. *Development of integrated circuits and smart sensors for particle detection in physics experiments and particle therapy*. Diss. 2021.

HVMAPS (P2Pix)

- For MOLLER, we will be using a version of the HVMAPS known as P2Pix
- Each chip will be approx. 20 x 23 mm² in size, with a detectable area of 2 x 2 cm²
- Detectable area will have an array of 250 x 256 pixels (64,000 pixels in total), with each pixel being 80 x 80 μm^2
- 100 microns thick, therefore optimizing ease of handling and material budget
- Peak detection rate of 30 MHz, with timing resolutions of 16 ns
- Requires -ve (60-100)V bias voltage
- Generates about 1 W of heat during peak operation
- To improve noise performance and longevity, chips should ideally stay below 50 degrees Celsius

Implementation of HVMAPS for MOLLER

Main Detector Ring 5 Module

- Position a plane of HVMAPS behind each Ring 5 quartz tile to monitor event profile in the main Moller region
- Each Ring 5 quartz will have an array of 28 HVMAPS (7 x 4) attached perpendicular to the quartz
- Separate enclosure containing the HVMAPS will be mounted to the Ring 5 quartz trays
- ~28 W of heat produced by each HVMAPS plane of each module; need to flow chilled air over HVMAPS to keep them cool
- Kapton film on enclosure will help protect HVMAPS, as well as aid air flow across them

Compton Polarimeter

- Design 4 planes of detectors using HVMAPS with each plane having a 6 x 2 = 12 cm 2 detectable area
- Each plane will have 3 HVMAPS bonded to a metal-core PCB
- Detectors will be under vacuum, so need to implement cooling system to keep HVMAPS below 50 degrees Celsius
- (~12 W of heat generation expected)
- Integrate the cooling structure into the mounting structure and assembly
- Use conduction as main method of heat transfer away from source (HVMAPS)

HVMAPS Enclosure for Ring 5 Modules

Flexprint (by Jie Pan)

CAD by Kristofer Isaak, University of Manitoba

HVMAPS for the Compton Polarimeter

Existing microstrip detector planes

Metal-core PCB for HVMAPS

- PCB designed by Jie Pan, University of Manitoba
- HVMAPS will be glued and wire-bonded to the PCB
- Metal-core PCB will help conduct heat produced by the HVMAPS away for dissipation
- Exploring the idea of using thermal pads to improve thermal conduction between metal-core PCB and HVMAPS

Cooling Blocks and Heat Exchanger

17

Thermal Simulations

Ring 5 HVMAPS Enclosure

Temperature distribution of Ring 5 HVAPS enclosure (Kristofer Isaak, U of Manitoba)

Compton Electron Detector Plane

Temperature distribution of Compton HVMAPS planes (Shefali Prabhakar, U of Manitoba)

Thank you. Questions?

