Developing The Detector Array For Energy Measurements Of Neutrons DAEMON)

Zarin Tasnim Ahmed

Prof. Paul Garrett, Dr. Konstantin Mastakov

University of Guelph
CAP Congress 2023, Fredericton, NB

Bridging the Gap: Neutron-Rich Nuclei & Solar Abundance Models

Astrophysical rapid neutron capture

Nuclear structure

Nuclear reactors

%TRIUMF

Canada's particle accelerator centre Centre canadien d'accélération des particules

Isotope Separator and Accelerator (ISAC-I) facility

Vancouver, BC

GRIFFIN - Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei

- > ZDS Zero Degree Scintillator
- ➤ DESCANT DEuterated SCintillator Array for Neutron Tagging
- ➤ DAEMON Detector Array for Energy Measurements Of Neutrons

Time-Of-Flight (TOF) Neutron Detector

TOF between two clocks to find neutron energy:

$$E_n = \frac{1}{2}mv^2 = \frac{1}{2}m\frac{L^2}{TOF^2}$$

- *L*, known flight path
- $TOF = t_2 t_1$, time difference between two detectors
- Energy resolution dependent on flight L and TOF

$$\frac{\delta E_n}{E_n} = 2\sqrt{\left(\frac{\delta t}{TOF}\right)^2 + \left(\frac{\delta L}{L}\right)^2}$$

- $\bullet \delta L$, detector thickness
- $\bullet \delta t$, time resolution of electronics

Reduced Thin detectors
by Fast components

Building a powerful all-in-one capability

for broad investigation of neutron-rich species

Step 1:

Prototyping DAEMON

Step 2:

Building the full array

Plastic Scintillators

- Well-suited for fast-timing measurements
- Large light attenuation length (380 cm)
- Can be machined to different shapes

EJ-204 and EJ-200 (Eljen Technologies)

 $1cm \times 1cm \times 6cm$

1.5cm thick hexagon

Silicon Photomultipliers (SiPMs)

- Dense array of single photon avalanche diode
- Alternative to PMT (but requires much less bias voltage!) Low profile, robust, large are coverage,

 $4mm \times 4mm$

2x2 array of $6mm \times 6mm$

1x15 array of $6mm \times 6mm$

Data AcQuisition System (DAQ)

- Convert physical signal into data that can be analysed
- DAQ considerations are need when designing an experiment
- Output that is sufficient for the physics goals

Data AcQuisition System (DAQ)

- Analog DAQ → To understand SiPM signals
- Digital DAQ

 Customizable parameters & event selection
 - ➤ Stage 1 : CAEN VX1730 digitizer
 - → Customizable threshold, pulse polarity, has dynamic range and waveform collection option
 - → Each comes with 16 readout channels
 - ➤ Stage 2: CAEN FERS-5200 A5202 board
 - → ASIC based front-end with multichannel readout
 - → Each unit houses 64 or 128 readout channels

Inside FERS-5200 A5202

Detection threshold & Timing resolution

Tests performed using available γ -ray sources: 60 Co, 137 Cs, 133 Ba and 241 Am

2x2 SiPM array

➤ Simulation (Bidaman, H., PhD dissertation) versus experimental tests

Total Energy sum of ALL SiPMs

Software summing between four independently read channels

DAEMON Prototyping

• Single SiPM with analog and digital DAQ (Radich, A.J., PhD Dissertation)

 Intensive complementary investigation of experiment and simulations (Bidaman, H., PhD dissertation)

• (Unfortunately), no neutrons were harmed in this work

THANK YOU

University of Guelph

Paul Garrett

Vinzenz Bildstein

Allison Radich

Konstantin Mastakov

Harris Bidaman

TRIUMF

Iris Dillmann

Adam Garnsworthy

Back-up slides

$oldsymbol{eta}$ -decay strength function & neutron-rich nuclei

$$T_{1/2}^{-1} = \sum_{E_i \ge Q_\beta}^{E_i \le Q_\beta} S_\beta(E_i) \times f(Z, Q_\beta - E_i)$$

- Gamow-Teller (GT) transitions dominate β strength distribution $S_{\beta}(E_i)$ for neutron-rich nuclei
- B(GT) within Q_{β} value has direct influence of β decay half-life
- Theoretical models have high success in B(GT) calculations in limited areas
- Neutron spectroscopy will allow deriving B(GT) for neutron-unbound states
 - \circ Evidence of single-particle states influencing B(GT) (M. Madurga et al. 2016)

Eljen EJ-200 plastic scintillator

- Scintillation emission wavelengths in the violet-indigo visible region
- Well-suited for fast-timing measurements
- Sensitive to X-rays, γ rays, charged particles and fast neutrons
- Can be machined to different shapes and sizes
- Large light attenuation length (380 cm)
- For critical operating requirements such as high sensitivity and signal uniformity

DAEMON Experimental Testing

Single SiPM with analog and digital DAQ (Radich, A.J., Phd Dissertation)

- 2x2 SiPM array
 - ► ZDS-SiPM Coincidence Timing Resolution
 - ➤ SiPM Energy Measures γ sources
 - > Energy calibration with γ sources
 - ➤ Low energy threshold measurement
 - ➤ Summing at software & hardware level

Silicon Photomultipliers (SiPMs)

 $4mm \times 4mm$

2x2 array of $6mm \times 6mm$

- MicroFJ-SMA-40035-GEVB (OnSemi)
- 2x2 Array of ArrayJ-60035-4P-PCB (OnSemi)
- > 1x15 Array of S14161-0686 (Hamamatsu)
- > 4x4 Array of S14161-6050HS-04 (Hamamatsu) JUST ARRIVED!

- Dense array of single photon avalanche diode (SPAD)
- Photon detection efficiency, single photon time resolution, SiPM signal response, gain fluctuation, prompt and delayed cross talk, etc.

Summing

"Poor man's summing" at hardware level

SiPM PMSumming Energy Calibration

- ➤ Reduced noise/event rate allowed to go low threshold settings
- >Impedance mismatch

Need to test on industrial summing boards (readily available for 8x8 arrays)

1x15 SiPM with ASIC

Live feedback during acquisition

FERS-5200 A5202

Emitter Excited States

- Neutron emission is a two-body process: daughter nucleus & emitted neutron
- Conservation of energy:

$$m({}_{Z}^{A}Y_{N})c^{2} = m({}_{Z}^{A-1}Y_{N-1})c^{2} + E'_{x} + T_{R} + m_{n}c^{2} + T_{n}$$

• Rewrite in terms of neutron separation energy:

$$S_n = \left(m\binom{A-1}{Z}Y_{N-1}\right) - m\binom{A}{Z}Y_N + m_n\right)c^2$$

$$T_R = T_n \left(\frac{m_n}{m_R}\right) \approx \frac{T_n}{A-1}$$

• Obtaining a more simplified form:

$$E_x = E_x' + S_n + \frac{A}{A - 1} T_n$$

ToT vs Δt for channels #0 and #1

Operating Voltage:	41.3 V	43.3 V
SiPM0-SiPM1 dT FWHM w/ high ToA cut	2.07(3) ns	1.69(2) ns
SiPM0-SiPM1 dT FWHM w/ high ToT cut	2.92(7) ns	1.85(4) ns
ZDS-SiPM1 dT FWHM w/ 10 ns ToT cut	5.44(44) ns	2.73(17) ns

