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Beta-delayed neutron emission, 𝛽𝒏

Precision on measuring 
neutron kinetic energy is key to 

𝛽𝑛 spectroscopy experiments
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Bridging the Gap: Neutron-Rich Nuclei & Solar 
Abundance Models

o Astrophysical rapid 

neutron capture

o Nuclear structure  

o Nuclear reactors

Abriola, B. Singh, and I. Dillman, IAEA Report, INDC(NDS) 0599 (2011). 

Isotopes in white are unidentified



Vancouver, BC

Isotope Separator and Accelerator 
(ISAC-I) facility

Decay Station
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GRIFFIN - Gamma-Ray Infrastructure 
For Fundamental Investigations of 
Nuclei 

➢ZDS - Zero Degree Scintillator 

➢DESCANT - DEuterated SCintillator 
Array for Neutron Tagging

➢DAEMON - Detector Array for Energy 
Measurements Of Neutrons
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Who are you?



Time-Of-Flight (TOF) Neutron Detector

𝒆−

Start signal
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• TOF between two clocks to find neutron energy:

𝐸𝑛 =
1
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1

2
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𝐿2

𝑇𝑂𝐹2  

▪ 𝐿, known flight path

▪ 𝑇𝑂𝐹 = 𝑡2 − 𝑡1, time difference between two detectors

• Energy resolution dependent on flight 𝐿 and 𝑇𝑂𝐹

Neutron 

detection

β detection
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= 2
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▪δ𝐿, detector thickness
▪δ𝑡, time resolution of electronics 

Thin detectors 
Fast components 

Reduced 

by
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δ𝐿 = 1.5cm of DAEMON
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Building a powerful all-in-one capability
for broad investigation of neutron-rich species

Step 1:

Prototyping DAEMON

•  

Step 2:

Building the full array

 



1𝑐𝑚 × 1𝑐𝑚 × 1𝑐𝑚 1𝑐𝑚 × 1𝑐𝑚 × 6𝑐𝑚 1. 5𝑐𝑚 𝑡ℎ𝑖𝑐𝑘 ℎ𝑒𝑥𝑎𝑔𝑜𝑛

Plastic Scintillators 
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• Well-suited for fast-timing measurements

• Large light attenuation length (380 cm)

• Can be machined to different shapes

EJ-204 and EJ-200 (Eljen Technologies)



Silicon Photomultipliers (SiPMs)
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• Dense array of single photon avalanche diode 

• Alternative to PMT (but requires much less bias 
voltage!) Low profile, robust, large are coverage, 

4𝑚𝑚 × 4𝑚𝑚 2x2 array of 6𝑚𝑚 × 6𝑚𝑚 

1x15 array of 6𝑚𝑚 × 6𝑚𝑚 
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Data AcQuisition System (DAQ) 

• Convert physical signal into data that can be analysed

• DAQ considerations are need when designing an experiment

• Output that is sufficient for the physics goals



• Analog DAQ → To understand SiPM signals 

• Digital DAQ → Customizable parameters & event 
selection

➢Stage 1 : CAEN VX1730 digitizer 
  → Customizable threshold, pulse polarity, has dynamic range and 
waveform collection option

  → Each comes with 16 readout channels 

➢Stage 2: CAEN FERS-5200 A5202 board  
   → ASIC based front-end with multichannel readout

   → Each unit houses 64 or 128 readout channels 

Data AcQuisition System (DAQ) 
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Inside FERS-5200 A5202



Detection threshold & Timing resolution
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Tests performed using available 𝛾-ray sources: 60Co, 137Cs, 133Ba and 241Am

443 (5) ps 

500 (10) ps 



➢Simulation (Bidaman, H., PhD 
dissertation) versus experimental tests

      
 

 

2x2 SiPM array 

Software summing between four 
independently read channels
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• Single SiPM with analog and digital 
DAQ (Radich, A.J., PhD Dissertation)

• Intensive complementary 
investigation of experiment and 
simulations (Bidaman, H., PhD 
dissertation) 

• (Unfortunately), no neutrons were 
harmed in this work

DAEMON Prototyping
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Back-up slides



𝑇 Τ1 2
−1 =  ෍

𝐸𝑖≥𝑄𝛽

𝐸𝑖≤𝑄𝛽

𝑆𝛽 𝐸𝑖 × 𝑓(𝑍, 𝑄𝛽 − 𝐸𝑖)

• Gamow-Teller (GT) transitions dominate 𝛽 strength distribution 𝑆𝛽(𝐸𝑖) for 
neutron-rich nuclei

• 𝐵(𝐺𝑇) within 𝑄𝛽 value has direct influence of 𝛽 decay half-life

• Theoretical models have high success in 𝐵(𝐺𝑇) calculations in limited areas

• Neutron spectroscopy will allow deriving 𝐵(𝐺𝑇) for neutron-unbound states

o Evidence of single-particle states influencing 𝐵(𝐺𝑇) (M. Madurga et al. 2016)

    

𝜷-decay strength function & neutron-rich nuclei
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• Scintillation emission wavelengths in the violet-indigo 
visible region

• Well-suited for fast-timing measurements

• Sensitive to X-rays, γ rays, charged particles and fast 
neutrons

• Can be machined to different shapes and sizes

• Large light attenuation length (380 cm)

• For critical operating requirements such as high 
sensitivity and signal uniformity

Eljen EJ-200 plastic scintillator
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• Single SiPM with analog and digital DAQ (Radich, A.J., Phd Dissertation)

• 2x2 SiPM array 

➢ZDS-SiPM Coincidence Timing Resolution

➢SiPM Energy Measures – γ sources 

➢Energy calibration with γ sources 

➢Low energy threshold measurement

➢Summing at software & hardware level

DAEMON Experimental Testing

21



Silicon Photomultipliers (SiPMs)

➢ MicroFJ-SMA-40035-GEVB (OnSemi)

➢ 2x2 Array of ArrayJ-60035-4P-PCB (OnSemi)

➢ 1x15 Array of S14161-0686 (Hamamatsu)

➢ 4x4 Array of S14161-6050HS-04 (Hamamatsu) 

4𝑚𝑚 × 4𝑚𝑚 2x2 array of 6𝑚𝑚 × 6𝑚𝑚 

JUST ARRIVED!
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• Dense array of single photon avalanche diode (SPAD)

• Photon detection efficiency, single photon time 
resolution, SiPM signal response, gain fluctuation, 
prompt and delayed cross talk, etc.



Summing
“Poor man’s summing” at hardware level

➢Reduced noise/event rate allowed to go low threshold settings 

➢Impedance mismatch 

Need to test on industrial summing boards (readily available for 8x8 arrays)
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1x15 SiPM with ASIC
Live feedback during acquisition
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FERS-5200 A5202
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Emitter Excited States

• Neutron emission is a two-body process: daughter nucleus & emitted neutron

• Conservation of energy:

 𝑚 𝑍
𝐴𝑌𝑁 𝑐2 = 𝑚 𝑍

𝐴−1𝑌𝑁−1 𝑐2 + 𝐸𝑥
′ + 𝑇𝑅  + 𝑚𝑛𝑐2 + 𝑇𝑛

 

• Rewrite in terms of neutron separation energy: 

𝑆𝑛 = 𝑚 𝑍
𝐴−1𝑌𝑁−1  − 𝑚 𝑍

𝐴𝑌𝑁 + 𝑚𝑛 𝑐2

𝑇𝑅 =  𝑇𝑛

𝑚𝑛

𝑚𝑅
≈

𝑇𝑛

𝐴 − 1

• Obtaining a more simplified form:

𝐸𝑥 =  𝐸𝑥
′ + 𝑆𝑛 +

𝐴

𝐴 − 1
𝑇𝑛
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Operating Voltage: 41.3 V 43.3 V

SiPM0-SiPM1 dT FWHM w/ high ToA cut 2.07(3) ns 1.69(2) ns

SiPM0-SiPM1 dT FWHM w/ high ToT cut 2.92(7) ns 1.85(4) ns

ZDS-SiPM1 dT FWHM w/ 10 ns ToT cut 5.44(44) ns 2.73(17) ns
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