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Motivation

* Machine Learning (ML) algorithms have transformed the methods of data
analysis, image pattern recognition, and math modeling.

* Artificial Neural Networks (ANNs) are among the most talked about techniques in
the ML family with a wide range of applications.

* Applications of ANNs

Generative Pr;rained

I'-ﬂn?i%fmef (GPT) What can ANNs do to
. ! . .
. ' accelerate Gravitational
| Wave (GW) research?
L-. 1 ‘ y L)
Self-driving Cars* Natural Language Processing”
*Side-by-side camera view and ANN annotated LIDAR AAl chat robot with facial expressions, movements,

data (Waymo) and voice generated using GPT-3 (OpenAl) 2



Western

UNIVERSITY - CANADA

Motivation

* Active research areas:
* Detector transient noise (glitch) classification.
e Real-time Binary Black Hole (BBH) Binary Neutron Star (BNS) merger event detection.

* BBH/BNS merger event forecasting.
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Objective

* Design a transform method that produces chirp-rate enhanced spectrograms to
improve spectrogram classification networks’ performance in low signal-to-noise
ratio BBH, BNS merger signal detection and forecasting.
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BBH BNS Merger GW Waveform

Chirp signal: ~ changing frequency

Our proposed method ta rgets 3 BBH Merger Process and Waveform
specific type of GW signal produced by verser g
two merging compact objects: o//e 0/) Qo

* The energy of a binary merger system is lost in the “;0 __
form of radiating GW. 2 o0

£-0.

* This process causes the distance between the 0 | Reconsiructes tempite | |
objects to decrease and the angular speed to Soel ' ' ' 1, &
increase, thus causing increasingly stronger GW B 0.5 [ e e ity 13 %
emissions and higher angular frequencies. heqs . , | e 2
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Current Detection Techniques

Technique 1: Templated Search — Matched Filtering

PyCBC Matched Filtering Result of GW150914 Signal from the Hanford Detector
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Hanford detector signal of BBH merger event GW150914 (September 14 2015,
09:50:45 UTC) plotted against the matched waveform template in PyCBC.

It compares the input signal to a set of signals in the
template bank where numerically generated signals are
stored at and the best match is determined following a
series of vetoing algorithms.

Background

Technigue 2: Non-templated Search — Burst Search

Spectrogram (Normalized tile energy)
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The spectrogram of an unknown event recorded by the Livingston detector at
GPS time 931158360 (July 8 2009, 07:05:45 UTC), generated by the coherence
waveBurst pipeline.

This search algorithm looks at chirp-like signals as
potential mergers and flags them for further
verification
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Existing Spectrogram Generation Methods
Constant Q Transform of GW 150914

500

* Short-time Fourier Transform (STFT)
* Gabor Transform (GT)

e Constant Q Transform (CQT)

* S (Stockwell) Transform (ST)
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S Transform of a simulated BBH merger

S Transform Spectrogram Normalized Value

1000
e All use the Fourier transform as the 800
foundation.

* Only decompose the relationship between >
time and frequency. 400

* The defining characteristic of a BBH merger
signal, the chirp, is abandoned. e
0
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Simulated merger m1 = m2 =, normalized amplitude 1, injected

to Gaussian noise of amplitude 10. 7
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Obtaining the Chirp-rate Information

Fourier Transform (FT) Linear Chirp Transform (LCT)
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Obtaining the Chirp-rate Information

Linear Chirp Transform (LCT)
DLCT of a 4-Component Signal
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Discrete Linear Chirp Transform (DLCT) of a 4-component linear chirp signal.
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The Joint-Chirp-Rate-Time-Frequency Transform (JCTFT)
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A 2D representation by taking an orthogonal
projection of the JCTFT along the chirp rate axis:
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An Alternative Definition using the Convolution Theorem

HJ('Ya T, Q) — -F{f(1';).9_1'(_3(It — 7,7, Q)}
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an alternative frequency domain representation of the JCTFT is 0y |
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where z = a + b, a = , and b = 27.
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JCTFT vs. Q-Transform
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Results
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Results

Classification Accuracy using Inception V3 Network

Classification Accuracy vs. Signal Peak SNR
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SNR-categorized classification accuracy of the JCTFT and QT-
trained Inception merger detection network.
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SNR-categorized confusion matrix of the JCTFT and
QT-trained Inception merger detection network.

*On average 14% higher merger-merger accuracy for simulated BBH merger signals

with SNR 6-10.
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Conclusions:
 The JCTFT decomposes time-series signals into chirp rate, time and frequency,
and establishes the relationship between the three quantities.

* Improved neural network classification accuracy using simulated BBH merger
signals with SNR 6-10.

 The JCTFT and methods extended from it pave the way for new three-

dimensional chirp signal search and analysis techniques, using either classical
methods or machine learning algorithms.

14
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Conclusions and Future Work

Next,

An improved chirp signal peak detection algorithm for more accurate chirp-rate
estimation.

Probe the potential of detector glitch classification and analysis using the JCTFT.
Investigate the JCTFT periodicity and signal peak characteristics.

Investigate the effects of these methods in low-latency ANN BBH merger
detection pipelines.

* Potential applications in radar, lidar, sonar, and geophysical data analysis?
(Since this is a session focused on nuclear and particle theory, do you

experts see applications of the JCTFT in data analysis in your fields?!)
15
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Appendix

Parameter Value Parameter Value
Input Sample Frequency (s~') 2048 ~* (87%) 0 - 2400
JOTFT Sample Frequency (s—1) GO0 O (575 G0
0 (s 30 - 300 I* 0 - 40
0 (s71) 25 o*(s~1) i
iy 0.0075

Table 1: JOCTFT parameter values or ranges used for generating the results in this paper unless specified
otherwise. The JCTFT sampling frequency and £ are determined based on detector specifications [34].
Parameters labeled by * are estimated based on determined values using equations (1), (6). and (9).
Different combinations mayv produce better or worse results.
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Figure 3: (a) Signal h¥’;(¢): Simulated high SNR BBH merger GW signal strain h3JS (t) with aLIGO

detector characteristic noise. (b) Signal hi’s';(¢): Simulated low SNR BBH merger GW signal strain
hyioe(t) with aLIGO detector characteristic noise. Noisy signals hZ\z(t) and hy/'x(t) are plotted in

blue. Merger signals are plotted in red.
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Figure 4: Processed JCTFT result of merger signal hi?ir:(t] plotted in three-dimensional space. The
green, blue, and red axes indicate time, frequency, and chirp rate. Red voxels represent higher fre-

quencies, and blue voxels represent lower frequencies.

Chirp Rate

Fraquency

Figure 5: Processed JCTFT result of merger signal h5)" (t) plotted in three-dimensional space. The

C
green, blue, and red axes indicate time, frequency, and chirp rate. Red voxels represent higher fre-

quencies, and blue voxels represent lower frequencies.
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Parameters Values
Sample Frequency (s~ ) 2048
Lower-Frequency Cut-off (s=1) a0
Spectrogram Shape (pixels) 206%256%3
Combined Pre-merger Mass ( Mz 10 - 83
Distances (kMpc) 0.6 - 1.2
1.4-2
Z-axis Spin -1.1]
Spin Beta Distribution a=3F=0.125
Merger Position (s) 2,3, 0r 4 £+ 0.5

Normal Distribution

Table Al: Training and Testing Dataset Parameter Values.

Appendix

M1200 contains 12,500 simulated noisy merger waveforms from BBH systems between 600 Mpc and 1200 Mpc, and
12,500 aLlIGO detector noise waveforms; M2000 contains 12,500 simulated noisy merger waveforms from systems
between 1400 Mpc and 2000 Mpc, and 12,500 aLIGO detector noise waveforms. The merger waveforms were
simulated for systems with combined pre-merger masses between 10M(Q® and 83M(Q.
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