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Motivation

• Machine Learning (ML) algorithms have transformed the methods of data 
analysis, image pattern recognition, and math modeling.

• Artificial Neural Networks (ANNs) are among the most talked about techniques in 
the ML family with a wide range of applications.
• Applications of ANNs

Self-driving Cars*

Generative Pre-trained 

Transformer (GPT)

*Side-by-side camera view and ANN annotated LIDAR 
data (Waymo)

Natural Language Processing^
^AI chat robot with facial expressions, movements, 
and voice generated using GPT-3 (OpenAI)

What can ANNs do to 
accelerate Gravitational 
Wave (GW) research?
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Motivation

• Active research areas:
• Detector transient noise (glitch) classification.

• Real-time Binary Black Hole (BBH) Binary Neutron Star (BNS) merger event detection.

• BBH/BNS merger event forecasting.

…

Glitch Classification*
*Spectrograms of two types of glitches (Gravity Spy)

BBH/BNS Merger Detection^

^ Convolutional Neural Network (CNN) in merger 
event detection, classification. (Plamen G. Krastev)

Krastev, P. G. (2020). Real-time detection of gravitational waves from binary 
neutron stars using Artificial Neural Networks. Physics Letters B, 803, 135330. 

M. Zevin and et al., “Gravity spy: integrating advanced ligo detector characterization, 
machine learning, and citizen science,” Classical and Quantum Gravity, vol. 34, no. 6, p. 
064003, 2017

BBH/BNS Merger Forecasting◦

◦ Spectrogram of a simulated BNS merger signal (W. 
Wei and et al.)

W. Wei and et al., “Deep learning with quantized neural networks 
for gravitational-wave forecasting of eccentric compact binary 
coalescence,” The Astrophysical Journal, vol. 919, no. 2, p. 82, 20213



Objective

• Design a transform method that produces chirp-rate enhanced spectrograms to 
improve spectrogram classification networks’ performance in low signal-to-noise 
ratio BBH, BNS merger signal detection and forecasting.
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BBH BNS Merger GW Waveform

Francisco R. Villatoro (2018)

BBH Merger Process and Waveform

Background

Chirp signal: ~ changing frequency
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Our proposed method targets a 
specific type of GW signal produced by 
two merging compact objects:

• The energy of a binary merger system is lost in the 
form of radiating GW. 

• This process causes the distance between the 
objects to decrease and the angular speed to 
increase, thus causing increasingly stronger GW 
emissions and higher angular frequencies. 



Current Detection Techniques

Technique 1: Templated Search – Matched Filtering

Hanford detector signal of BBH merger event GW150914 (September 14 2015, 
09:50:45 UTC) plotted against the matched waveform template in PyCBC.

Technique 2: Non-templated Search – Burst Search

The spectrogram of an unknown event recorded by the Livingston detector at 
GPS time 931158360 (July 8 2009, 07:05:45 UTC), generated by the coherence 
waveBurst pipeline.

Background

6

It compares the input signal to a set of signals in the 

template bank where numerically generated signals are 

stored at and the best match is determined following a 

series of vetoing algorithms. 
This search algorithm looks at chirp-like signals as 
potential mergers and flags them for further 
verification



Existing Spectrogram Generation Methods
Constant Q Transform of GW 150914

Background

S Transform of a simulated BBH merger

Simulated merger m1 = m2 =, normalized amplitude 1, injected 
to Gaussian noise of amplitude 10.

• Short-time Fourier Transform (STFT)
• Gabor Transform (GT)
• Constant Q Transform (CQT)
• S (Stockwell) Transform (ST)
• …

• All use the Fourier transform as the 
foundation.

• Only decompose the relationship between 
time and frequency.

• The defining characteristic of a BBH merger 
signal, the chirp, is abandoned. 
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Obtaining the Chirp-rate Information

Background

Linear Chirp Transform (LCT)Fourier Transform (FT)

Matching the input signal x(t) to 
a constant frequency signal 

model: 𝑒−i2πΩ𝑡.

Matching the input signal x(t) to 
a linear chirp signal model: 

𝑒−i2π(Ω𝑡+𝛾𝑡
2).

O, A, Alkaishriwo & L.F. Chaparro (2012)
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Obtaining the Chirp-rate Information

Background

One can obtain the chirp rate and 
starting frequency of each chirp 
signal by further processing the 
Linear Chirp Transform frequency-
chirp-rate diagram. 

Discrete Linear Chirp Transform (DLCT) of a 4-component linear chirp signal.

𝑥4−𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑡 =

𝑒𝑗2𝜋𝑡
2
+ 𝑒𝑗2𝜋5𝑡

2
+ 𝑒𝑗2𝜋7𝑡

2
+ 𝑒𝑗2𝜋10𝑡

2

Linear Chirp Transform (LCT)

O, A, Alkaishriwo & L.F. Chaparro (2012)
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The Joint-Chirp-Rate-Time-Frequency Transform (JCTFT)

Methodology

𝛾 = 0
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Short-Time 
Fourier Transform

𝛾 = 0
Gaussian Window

A 2D representation by taking an orthogonal 
projection of the JCTFT along the chirp rate axis:



An Alternative Definition using the Convolution Theorem

Methodology

an alternative frequency domain representation of the JCTFT is

and Gc is the Fourier transform of the complex linear chirp 
window function gc(t) with a dummy frequency variable α due to 
the convolution:
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JCTFT vs. Q-Transform

Results

Test signal: Merger: SEOBNR-Phenom Model
Starting Freq: 30 Hz ; Masses: 15 Solar, 10 Solar

• Noisy Merger SNR 29.9

• Noisy Merger SNR 10.4
Noise: aLIGO 0-detuned-Higher-Power 12

• Clean Merger

QT

QT

QT

JCTFT

JCTFT

JCTFT



Classification Accuracy using Inception V3 Network

Results

SNR-categorized classification accuracy of the JCTFT and QT-
trained Inception merger detection network.
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SNR-categorized confusion matrix of the JCTFT and 
QT-trained Inception merger detection network.

*On average 14% higher merger-merger accuracy for simulated BBH merger signals 
with SNR 6-10.



Conclusions and Future Work

Conclusions:
• The JCTFT decomposes time-series signals into chirp rate, time and frequency, 

and establishes the relationship between the three quantities. 
• Improved neural network classification accuracy using simulated BBH merger 

signals with SNR 6-10.
• The JCTFT and methods extended from it pave the way for new three-

dimensional chirp signal search and analysis techniques, using either classical 
methods or machine learning algorithms.
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Conclusions and Future Work
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Next, 
• An improved chirp signal peak detection algorithm for more accurate chirp-rate 

estimation.
• Probe the potential of detector glitch classification and analysis using the JCTFT.
• Investigate the JCTFT periodicity and signal peak characteristics.
• Investigate the effects of these methods in low-latency ANN BBH merger 

detection pipelines.

• Potential applications in radar, lidar, sonar, and geophysical data analysis?
(Since this is a session focused on nuclear and particle theory, do you 
experts see applications of the JCTFT in data analysis in your fields?!)
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Visiting PhD candidates:

• Developing Data Analysis Techniques for Gravitational Wave 
Detectors – Xuehao Zhang (Lanzhou University) – 2 years

• Search Methods for Deterministic Gravitational Wave Sources 
and Their Application to Pulsar Timing Arrays – Yiqian Qian 
(Huazhong University of Science and Technology) – 1 year

In collaboration with Professor Soumya Mohanty at the 
University of Texas Rio Grande Valley (UTRGV)
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• Pulsar Spin-down Coefficients - Varenya 
Upadhyaya 2023
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• Neural Networks and GW Detection - Jignesh 
Mohanty 2022

• ….
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Appendix

M1200 contains 12,500 simulated noisy merger waveforms from BBH systems between 600 Mpc and 1200 Mpc, and 
12,500 aLIGO detector noise waveforms; M2000 contains 12,500 simulated noisy merger waveforms from systems 
between 1400 Mpc and 2000 Mpc, and 12,500 aLIGO detector noise waveforms. The merger waveforms were 
simulated for systems with combined pre-merger masses between 10M⊙ and 83M⊙.
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