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The construction of a large quantum computer is a
challenge for current research. The overarching problem
is to develop physical systems which can reliably store
thousands of qubits and which allow addressability of
individual bits and pairs of bits in gate operations.
Proposals in which single trapped ions or atoms encode
qubits in their internal state have successfully demon-
strated the building blocks for few-bit devices, while scal-
ing of these systems to larger register sizes is believed to
require interconnects, e.g., with optical transmission. A
novel collective encoding scheme for qubits proposes to
use many identical quantum systems to encode each qubit,
either in the collective population of different internal
states [1–3] or in different spatial modes of excitation of
the entire system [4,5].

In this Letter we propose a hybrid approach to quantum
computing making use of an ensemble of 1010–1012 elec-
tron spins coupled to a superconducting transmission line
cavity. We will describe how a large number of spatial
modes can be addressed in the spin ensemble, and how a
transmon Cooper pair box (CPB) [6] integrated in the
cavity can provide one- and two-bit gates for quantum
computing in the spin ensemble [7,8]. Our scheme enables
materials for which large spin coherence times have been
demonstrated in ensemble measurements to be incorpo-
rated into a solid-state device. In this way, without requir-
ing single spin measurement or strong coupling to a cavity,
full use can be made of the sophisticated techniques which
are now well established for control of large numbers of
spins.

The proposed physical setup, as illustrated in Fig. 1,
consists of a superconducting transmission line cavity
coupled to a large number of solid-state electron spins
doped into or deposited on the surface of the substrate.
Two interesting choices for the electron spins would be
P-doped Si and endohedral fullerene molecules, e.g.,

N@C60, which would offer spin coherence times up to
tens of milliseconds [9–11]. Hahn echo techniques may
be applied to counter inhomogeneous broadening mecha-
nisms, and the coherence time scale may even be further
extended by transferring the electron spin state to nuclear
spin degrees of freedom where coherence times exceeding
seconds have been demonstrated [12]. The spins are biased
with a homogeneous magnetic field B in the plane of the
cavity, causing Larmor precession at an angular frequency
of !s ¼ m0B=@, where m0 is the magnetic dipole moment
of the spins. With a cavity resonance frequency of !c "
2!# 5 GHz, a bias field of B ¼ 180 mT is required to
bring the spin precession into resonance. Even in the
presence of the bias field, cavity linewidths as low as " "
2!# 250 kHz are possible [13].

FIG. 1 (color online). Physical setup, consisting of a super-
conducting transmission line cavity coupled to an ensemble of
electron spins and a transmon Cooper pair box [6]. The cavity
dimensions allow on the order of N ¼ 1011 electron spins to be
coupled to the cavity mode with an average coupling strength of
!g " 2!# 20 Hz. An external magnetic field composed of a
homogeneous bias field Bẑ and a switchable linear gradient
ðzẑ% yŷÞ"B=L is applied to the system.
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and Supplementary Methods for details). Combined canonical
variables for two ensembles X̂A ¼ ðĴy1 2 Ĵy2Þ=

ffiffiffiffiffiffiffi
2Jx

p
; P̂A ¼

ðĴz1 þ Ĵz2Þ=
ffiffiffiffiffiffiffi
2Jx

p
are then introduced, where Ĵx1 ¼2Ĵx2 ¼ Jx ¼

FNatoms: In the presence of H, the memory couples to the Q-
sidebands of light: X̂L ¼ 1ffiffiffi

T
p

Ð T
0 ðâþðtÞ þ âðtÞÞcosðQtÞdt; P̂L ¼

iffiffiffi
T

p
Ð T
0 ðâþðtÞ2 âðtÞÞcosðQtÞdt; where Q is the Larmor frequency of

spin precession.
Quantum storage of light is achieved in three steps: (1) an

interaction of light with atoms; (2) a subsequent measurement of
the transmitted light; and (3) feedback onto the atoms conditioned
on the measurement result (Fig. 1). The off-resonant interaction of
light with spin polarized atomic ensembles has been described
elsewhere4,17–19, and is summarized in the Methods section. The
interaction leads to the equations:

X̂
out
L ¼ X̂

in
L þ kP̂

in
A ; P̂

out
L ¼ P̂

in
L

X̂
out
A ¼ X̂

in
A þ kP̂

in
L ; P̂

out
A ¼ P̂

in
A

ð1Þ

These equations imply that light and atoms get entangled. The
remarkable simplicity of equations (1) provides a direct link
between an input light state, an atomic state, and an output light.
Suppose the input light is in a vacuum (or in a coherent) state, and
atoms are in a CSS with mean values kX̂Ll¼ kX̂Al¼ kP̂Ll¼ kP̂Al¼ 0
and variances dX2

L ¼ dX2
A ¼ dP2

L ¼ dP2
A ¼ 1=2: The interaction par-

ameter k, whose value is crucial for the storage protocol, is then
readily found as k2 ¼ 2 dXout

L

# $2
21:

For a perfect fidelity of mapping, the initial atomic state must be
an entangled spin state such as in ref. 12, with dX2

A ! 0: The pulse to
be recorded, combined with the entangling pulse (see Methods
section), is sent through, and its variable X̂out

L is measured.
The measurement outcome, x¼ X̂in

L þ kP̂inA ; is fed back into the
atomic variable P̂A with a feedback gain g. The result is P̂mem

A ¼
P̂inA 2 gx¼ P̂

in
A ð12 kgÞ2 gX̂in

L (see Supplementary Notes for a jus-
tification of this equation). With g ¼ k ¼ 1, the mapping of X̂in

L
onto 2P̂mem

A is perfect.
The second operator of light is already mapped onto atoms

via X̂mem
A ¼ X̂in

A þ P̂inL , see equation (1). For the entangled initial
state the mapping is perfect for this component too, P̂inL ! X̂mem

A ;
leading to the fidelity of the light-to-atoms state transfer F ! 100%.
If the initial atomic state is a CSS, the mapping is not perfect owing
to the noisy operator X̂in

A :However, fidelity F ¼ 82%, still markedly
higher than the classical limit, can be achieved. Note that the above
discussion holds for an arbitrary single mode input quantum state
of light.

In our experiment, the atomic storage unit consists of two
samples of caesium vapour placed in paraffin-coated glass cells
placed inside magnetic shields (Fig. 1). H is applied along the x-
direction with Q ¼ 322 kHz. Optical pumping along H initializes
the atoms in the first/second sample in the F ¼ 4,mF ¼ ^4 ground
state with the orientation above 99%. Hence Ĵx1 ¼2Ĵx2 ¼ Jx ¼
4Natoms < 1:2£ 1012: We thoroughly check and regularly verify
that the initial spin state is close to CSS (Supplementary Methods).
The coupling parameter k is varied by adjusting the density of
caesium vapour.
The input state â(t) is encoded in a 1-ms y-polarized pulse. The

state is chosen from the set {âinput} of coherent states with the
photon number in the range {knl ¼ 0, nmax} and an arbitrary phase.
â(t) is generated as Q sidebands by an electro-optical modulator
(EOM), and has the same spatial and temporal profile as the strong
entangling field (more information can be found in the Methods
section). Thus the EOM plays the third party, providing the field
to be stored. The pulses are detuned by 700MHz to the blue
from the 6S1/2, F ¼ 4 ! 6P3/2, F ¼ 5 transition (l ¼ 852 nm).
The polarization measurement of the light is followed by the
feedback onto atoms achieved by a 0.2ms radio-frequencymagnetic
pulse conditioned on the measurement result.
The experimental verification of the quantum storage is then

carried out. A read-out x-polarized pulse is sent through the
samples with a delay of 0.7–10ms after the feedback is applied.
Atomic memory generates a y-polarized pulse, which is analysed as
follows. As both X̂mem

A and P̂mem
A cannot be measured at the same

time, we carry out two series of measurements for each input state.
Each series consists of 104 quantum storage sequences. To verify the
X̂in
L !2P̂mem

A step of the storage, we measure the component
X̂read–out
L ¼ X̂read–in

L þ kP̂mem
A of the read-out pulse (XL is a Stokes

parameter measured in units of shot noise, as discussed in the
Methods section). An example of such a measurement carried out
after 0.7ms of storage is presented in Fig. 2a as a histogram of
1
k X̂

read–out
L (right histogram), with k measured as described in the

Methods section and in Supplementary Methods. For this series
kP̂inL l¼24 and kX̂in

L l¼ 0; corresponding to kn̂l ¼ 8 photons
in the pulse. From this measurement, we find the mean
kP̂mem

A l¼ 1
k kX

read–out
L l and the variance j2p ¼ k dP̂mem

A

# $
2l¼

1
k2 dXread–out

L

# $
22 1

2

# $
(see equations (1)) for the quantum state of

the memory. We note that only the knowledge of k and the shot
noise level of light is necessary for the determination of the mean
values and variances of the atomic canonical variables from the
experimental data.

Figure 1 Experimental set-up. a, Atomic memory unit consisting of two caesium cells

inside magnetic shields 1 and 2. The path of the recorded and read-out light pulses is

shown with arrows. b, The simplified layout of the experiment. The input state of light with
the desired displacements X L, P L is generated with the electro-optic modulator (EOM).

The inset shows the pulse sequence for the quantum memory recording and read-out.

Pulse (1) is the optical pumping (4 ms), pulse (2) is the input light pulse â(t ) overlapped

with the strong entangling pulse in orthogonal polarization with amplitude
ffiffiffiffiffiffiffiffi
nðt Þp

: Pulse (3)
is the magnetic feedback pulse. Pulse (4) is the magnetic p/2 pulse used for the read out

of one of the atomic operators. Pulse (5) is the read-out optical pulse.
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Interface other than perfect swap?

Yurke et al., PRA 33, 4033 (1986)

33 SU(2) AND SU(1,1) INTERFEROMETERS

new P&. Hence, on the average, the total number of pho-
tons ET used to detect the change in P& is NT 3——N. The
sensitivit~ of the interferometer, operated with

~
a

~
=1

and A, = —,, is thus expressed in terms of the total number
of photons needed to observe the change as

b,(j)=
T

(8.34)

a number that is somewhat better than Eq. (8.27).
In this section it has been shown that by using suitable

feedback loops the interferometer of Sec. VII ean track
changes in p1 in a stable manner and can achieve a phase
sensitivity of order 1/X. Hence the two problems en-
countered in Sec. VII, namely the fact that the inter-
ferometer achieves its optimum sensitivity only for a
small range of phases, (f ( 1/X, and that the fiuctuations
in J„„„the interferometer's output, are greater than
(J„„,) for

~
a

~
set at its optimum value, can be over-

come be operating the interferometer with
~

a
~
slightly

degraded or by choosing the response of the feedback loop
to be such that it averages enough successive measure-
ments of P that a useful error signal can be generated.
In the literature a number of schemes for achieving

interferometer sensitivities of 1/N have been described.
All of these schemes employ standard interferometers into
which light from degenerate-parametric amplifiers or
four-wave mixers is injected. In the next section we will
describe a novel set of interferometers which dispense
with beam splitters and use the SU(1,1) boosts to convert
phase shifts into light amplitude changes rather than the
SU(2) rotations employed by a conventional interferome-
ter,

FIG. 6. An SU(1,1) interferometer. The beam splitters of a
conventional interferometer have been replaced by the four-
wave mixers ~M1 and F%'M2. The light pumping F%M2 is
phase shifted from the light pumping FWM1 by the angle P.

particular let FWM1 have the scattering matrix

&(-p)=
cosh( —,' P)
—i sinh( —,

' P)

+i sinh( —,
' P)

cosh( —,' P)
(9.1)

L (—P,y )= 0 coshP —sinhP
0 —sinhP coshP

The scattering matrix for FWM2 is

cosh( —,' P) i sinh( —,
'—P)

s(p)= 1i sinh( 1P) cosh(TP)

(9.2)

(9.3)

As can be seen from Eq. (6.13), K transforms as a
Lorentz boost L(—p,y) along the —y axis under this
scattering matrix:

1 0 0

IX. AN SU(1,1) MACH-ZEHNDER INTERFEROMETER

In Sec. III it was shown how the operation of a Mach-
Zehnder interferometer could be viewed in terms of rota-
tions of the vector J under the rotation group SU(2).
In this picture relative phase shifts between two light

beams correspond to rotations about the z axis while pho-
todetectors are sensitive to rotations in a plane containing
the z axis. The function of the beam splitters was to can-
vert a rotation about the z axis into one perpendicular to
the z axis.
In this section an interferometer whose operation can be

viewed in terms of transformations of the vector K Eq.
(6.1), under the Lorentz group SU(1,1) is considered.
From Eq (6.21) one sees that the common mode phase
shift of two light beams corresponds to a rotation of K
about the z axis. But from Eq. (6.1) one sees that photo-
detectors placed in the two light beams will be sensitive
only to transformations perpendicular to the z axis.
Again, a device is required which will convert rotations

about the z axis into transformations perpendicular to this
axis. The four-wave mixers described in Sec. VI can carry
out such transformations. These transformations consist
of Lorentz boosts.
As a specific example, consider the device of Fig. 6.

The phase shifter f in the pump beam is.adjusted such
that four-wave mixer FWM2 performs the inverse of the
transformation performed by four-wave mixer FWM1. In

This scattering matrix transforms K as a Lorentz boost
L(p,y) along the +y axis. The transformation per-
formed by the phase shifters ((}1 and (()z is, from Eq. (6.20),

S(P)=
0 e

—i/2 (9.4)

s =s(p)s($)s( —p),
and the overall transformation performed on K is

(9.6}

K,„,=L (P,y)R (P,z)L (—P,y )K;„. (9.7)

It will be useful to reexpress this transformation as fol-
lows:

L(P,y)R (((},z)L ( Py) =R (e,z)L(—yx}R(e,z), (9.8)

where L (y,x) denotes a Lorentz baost along the x axis,

Under this scattering matrix K transforms as a rotation
R (((),z) about the z axis by an angle p =—($1+$2),

casp —sing 0
R (((},z )= sin((} cos((} 0 (9.5)

0 0 l

The overall scattering matrix for the device of Fig. 6 is
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new P&. Hence, on the average, the total number of pho-
tons ET used to detect the change in P& is NT 3——N. The
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and A, = —,, is thus expressed in terms of the total number
of photons needed to observe the change as

b,(j)=
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(8.34)

a number that is somewhat better than Eq. (8.27).
In this section it has been shown that by using suitable

feedback loops the interferometer of Sec. VII ean track
changes in p1 in a stable manner and can achieve a phase
sensitivity of order 1/X. Hence the two problems en-
countered in Sec. VII, namely the fact that the inter-
ferometer achieves its optimum sensitivity only for a
small range of phases, (f ( 1/X, and that the fiuctuations
in J„„„the interferometer's output, are greater than
(J„„,) for
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set at its optimum value, can be over-

come be operating the interferometer with
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slightly

degraded or by choosing the response of the feedback loop
to be such that it averages enough successive measure-
ments of P that a useful error signal can be generated.
In the literature a number of schemes for achieving

interferometer sensitivities of 1/N have been described.
All of these schemes employ standard interferometers into
which light from degenerate-parametric amplifiers or
four-wave mixers is injected. In the next section we will
describe a novel set of interferometers which dispense
with beam splitters and use the SU(1,1) boosts to convert
phase shifts into light amplitude changes rather than the
SU(2) rotations employed by a conventional interferome-
ter,

FIG. 6. An SU(1,1) interferometer. The beam splitters of a
conventional interferometer have been replaced by the four-
wave mixers ~M1 and F%'M2. The light pumping F%M2 is
phase shifted from the light pumping FWM1 by the angle P.
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cosh( —,' P) i sinh( —,
'—P)

s(p)= 1i sinh( 1P) cosh(TP)
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As can be seen from Eq. (6.13), K transforms as a
Lorentz boost L(—p,y) along the —y axis under this
scattering matrix:

1 0 0

IX. AN SU(1,1) MACH-ZEHNDER INTERFEROMETER

In Sec. III it was shown how the operation of a Mach-
Zehnder interferometer could be viewed in terms of rota-
tions of the vector J under the rotation group SU(2).
In this picture relative phase shifts between two light

beams correspond to rotations about the z axis while pho-
todetectors are sensitive to rotations in a plane containing
the z axis. The function of the beam splitters was to can-
vert a rotation about the z axis into one perpendicular to
the z axis.
In this section an interferometer whose operation can be

viewed in terms of transformations of the vector K Eq.
(6.1), under the Lorentz group SU(1,1) is considered.
From Eq (6.21) one sees that the common mode phase
shift of two light beams corresponds to a rotation of K
about the z axis. But from Eq. (6.1) one sees that photo-
detectors placed in the two light beams will be sensitive
only to transformations perpendicular to the z axis.
Again, a device is required which will convert rotations

about the z axis into transformations perpendicular to this
axis. The four-wave mixers described in Sec. VI can carry
out such transformations. These transformations consist
of Lorentz boosts.
As a specific example, consider the device of Fig. 6.

The phase shifter f in the pump beam is.adjusted such
that four-wave mixer FWM2 performs the inverse of the
transformation performed by four-wave mixer FWM1. In

This scattering matrix transforms K as a Lorentz boost
L(p,y) along the +y axis. The transformation per-
formed by the phase shifters ((}1 and (()z is, from Eq. (6.20),

S(P)=
0 e

—i/2 (9.4)

s =s(p)s($)s( —p),
and the overall transformation performed on K is

(9.6}

K,„,=L (P,y)R (P,z)L (—P,y )K;„. (9.7)

It will be useful to reexpress this transformation as fol-
lows:

L(P,y)R (((},z)L ( Py) =R (e,z)L(—yx}R(e,z), (9.8)

where L (y,x) denotes a Lorentz baost along the x axis,

Under this scattering matrix K transforms as a rotation
R (((),z) about the z axis by an angle p =—($1+$2),

casp —sing 0
R (((},z )= sin((} cos((} 0 (9.5)

0 0 l

The overall scattering matrix for the device of Fig. 6 is

Two-mode-squeezing for SU(1,1) interferometry

Results
Boson sampling and vibronic transitions. Boson sampling
considers the input of N photons into M optical modes. This
quantum space can be described through a Fock basis that counts
the number of photons distributed in each mode. We denote such
states by |n1, n2, . . . , nM〉 = |n〉, where nj corresponds to the
number of photons in the jth mode and we have the constraint∑

j nj = N . These photons are sent through an optical network
whose action is characterized by the unitary operation Û . Any
input state |fin〉 is related to the corresponding output state |fout〉

through the relation:

|fout〉 = Û|fin〉 (1)

Considering linear quantum optical set-ups poses a restriction on
the transformation Û that is constrained to represent a
multimode rotation. We denote such a rotation as R̂U because its
action is characterized by the M ×M unitary matrix U via the
expression:

â ′† = R̂ †
U â

†R̂U = U â † (2)

For notational simplicity, we introduce the column vectors of
boson-creation operators â † = (â †

1 , . . . , â
†
M)

t and transformed
boson-creation operators â ′† = (â ′†

1 , . . . , â
′†
M)

t , and adopt a
shorthand notation31 for the operator action on â †, that is
Ââ †B̂ = (Ââ †

1 B̂, . . . , Ââ
†
MB̂)

t .
Given this set-up, the problem is to compute both the transition

probability between input and output states in the Fock basis
expressed by the quantity:

Pnm = |〈m|R̂U |n〉|
2 (3)

where |n〉 is the input state and |m〉 the desired state in output, and,
perhaps more importantly, which output states |m〉 will significantly
contribute to the total distribution. As the total number of photons
and the number of modes increase, the probability distribution of
output states becomes hard to predict and sample from with classical
computers, but it can be measured directly with linear optics devices.
In particular, each transition probability, Pnm, is proportional to the
permanent of a different submatrix of U (refs 12,32).

We observe two facts: first, that the calculation of matrix
permanents is a computationally hard problem for many classes
of matrices belonging to the complexity class #P (ref. 12) and,
second, that the space of N photons in M optical modes is iso-
morphic to the space of N molecular vibrational quanta
(phonons) in M vibrational modes. The latter connection suggests
that the dynamics of vibrational modes is computationally difficult,
at least in some instances. Moreover, as we will show, the compu-
tation of spectra requires sampling from a distribution of an
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Figure 1 | Pictorial description of boson sampling and molecular vibronic
spectroscopy. a, Boson sampling consists of sampling the output distribution
of photons obtained from quantum interference inside a linear quantum
optical network. b, Vibronic spectroscopy uses coherent light to excite
electronically an ensemble of identical molecules and measures the
re-emitted (or scattered) radiation to infer the vibrational spectrum of the
molecule. We show in this work how the fundamental physical process that
underlies b is formally equivalent to situation a, together with a step to
prepare a nonlinear step.

Table 1 | A comparison of boson sampling and the computation of vibronic transitions.

Boson sampling Vibronic transitions

Harmonic oscillators

q1(ω)

q2(ω)q́1(ω)

q́2(ω)

d

q1(ω1)

q2(ω2) q́2(ώ2)

q́1(ώ1)

Linear transform â′† = Uâ† â′† =
1
2
(J − (Jt)−1)â +

1
2
(J + (Jt)−1)â† +

1""
2

√ δ
Unitary operators Rotation Displacement, squeezing and rotation
Particle to simulate Photon Phonon
Particle in simulator Photon Photon
Outcome of simulation |Permanent|2 FCP (spectrum)

The QHOs in the first row show the corresponding two-dimensional normal coordinates (qk and q
′
l for input and output states, respectively) and their respective harmonic frequencies (ωk andωl

′). The two sets
of QHOs in boson sampling are rotated with respect to each other such that the linear relation with the rotation matrix U of the boson-creation operators are given in the second row. The two sets of QHOs in
vibronic transitions are displaced, distorted (frequency changes) and rotated with respect to each other. d is a displacement vector of the QHOs. The boson-creation operator (â′†) of the output state is now given
as a linear combination of the boson-annihilation (â) and -creation (â†) operators of the input state with the dimensionless displacement vector δ. A matrix J characterizes the rotation and squeezing operations
during a vibronic transition. This scenario applies only when U is a real matrix.
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new P&. Hence, on the average, the total number of pho-
tons ET used to detect the change in P& is NT 3——N. The
sensitivit~ of the interferometer, operated with

~
a

~
=1

and A, = —,, is thus expressed in terms of the total number
of photons needed to observe the change as

b,(j)=
T

(8.34)

a number that is somewhat better than Eq. (8.27).
In this section it has been shown that by using suitable

feedback loops the interferometer of Sec. VII ean track
changes in p1 in a stable manner and can achieve a phase
sensitivity of order 1/X. Hence the two problems en-
countered in Sec. VII, namely the fact that the inter-
ferometer achieves its optimum sensitivity only for a
small range of phases, (f ( 1/X, and that the fiuctuations
in J„„„the interferometer's output, are greater than
(J„„,) for

~
a

~
set at its optimum value, can be over-

come be operating the interferometer with
~

a
~
slightly

degraded or by choosing the response of the feedback loop
to be such that it averages enough successive measure-
ments of P that a useful error signal can be generated.
In the literature a number of schemes for achieving

interferometer sensitivities of 1/N have been described.
All of these schemes employ standard interferometers into
which light from degenerate-parametric amplifiers or
four-wave mixers is injected. In the next section we will
describe a novel set of interferometers which dispense
with beam splitters and use the SU(1,1) boosts to convert
phase shifts into light amplitude changes rather than the
SU(2) rotations employed by a conventional interferome-
ter,

FIG. 6. An SU(1,1) interferometer. The beam splitters of a
conventional interferometer have been replaced by the four-
wave mixers ~M1 and F%'M2. The light pumping F%M2 is
phase shifted from the light pumping FWM1 by the angle P.

particular let FWM1 have the scattering matrix

&(-p)=
cosh( —,' P)
—i sinh( —,

' P)

+i sinh( —,
' P)

cosh( —,' P)
(9.1)

L (—P,y )= 0 coshP —sinhP
0 —sinhP coshP

The scattering matrix for FWM2 is

cosh( —,' P) i sinh( —,
'—P)

s(p)= 1i sinh( 1P) cosh(TP)

(9.2)

(9.3)

As can be seen from Eq. (6.13), K transforms as a
Lorentz boost L(—p,y) along the —y axis under this
scattering matrix:

1 0 0

IX. AN SU(1,1) MACH-ZEHNDER INTERFEROMETER

In Sec. III it was shown how the operation of a Mach-
Zehnder interferometer could be viewed in terms of rota-
tions of the vector J under the rotation group SU(2).
In this picture relative phase shifts between two light

beams correspond to rotations about the z axis while pho-
todetectors are sensitive to rotations in a plane containing
the z axis. The function of the beam splitters was to can-
vert a rotation about the z axis into one perpendicular to
the z axis.
In this section an interferometer whose operation can be

viewed in terms of transformations of the vector K Eq.
(6.1), under the Lorentz group SU(1,1) is considered.
From Eq (6.21) one sees that the common mode phase
shift of two light beams corresponds to a rotation of K
about the z axis. But from Eq. (6.1) one sees that photo-
detectors placed in the two light beams will be sensitive
only to transformations perpendicular to the z axis.
Again, a device is required which will convert rotations

about the z axis into transformations perpendicular to this
axis. The four-wave mixers described in Sec. VI can carry
out such transformations. These transformations consist
of Lorentz boosts.
As a specific example, consider the device of Fig. 6.

The phase shifter f in the pump beam is.adjusted such
that four-wave mixer FWM2 performs the inverse of the
transformation performed by four-wave mixer FWM1. In

This scattering matrix transforms K as a Lorentz boost
L(p,y) along the +y axis. The transformation per-
formed by the phase shifters ((}1 and (()z is, from Eq. (6.20),

S(P)=
0 e

—i/2 (9.4)

s =s(p)s($)s( —p),
and the overall transformation performed on K is

(9.6}

K,„,=L (P,y)R (P,z)L (—P,y )K;„. (9.7)

It will be useful to reexpress this transformation as fol-
lows:

L(P,y)R (((},z)L ( Py) =R (e,z)L(—yx}R(e,z), (9.8)

where L (y,x) denotes a Lorentz baost along the x axis,

Under this scattering matrix K transforms as a rotation
R (((),z) about the z axis by an angle p =—($1+$2),

casp —sing 0
R (((},z )= sin((} cos((} 0 (9.5)

0 0 l

The overall scattering matrix for the device of Fig. 6 is
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Results
Boson sampling and vibronic transitions. Boson sampling
considers the input of N photons into M optical modes. This
quantum space can be described through a Fock basis that counts
the number of photons distributed in each mode. We denote such
states by |n1, n2, . . . , nM〉 = |n〉, where nj corresponds to the
number of photons in the jth mode and we have the constraint∑

j nj = N . These photons are sent through an optical network
whose action is characterized by the unitary operation Û . Any
input state |fin〉 is related to the corresponding output state |fout〉

through the relation:

|fout〉 = Û|fin〉 (1)

Considering linear quantum optical set-ups poses a restriction on
the transformation Û that is constrained to represent a
multimode rotation. We denote such a rotation as R̂U because its
action is characterized by the M ×M unitary matrix U via the
expression:

â ′† = R̂ †
U â

†R̂U = U â † (2)

For notational simplicity, we introduce the column vectors of
boson-creation operators â † = (â †

1 , . . . , â
†
M)

t and transformed
boson-creation operators â ′† = (â ′†

1 , . . . , â
′†
M)

t , and adopt a
shorthand notation31 for the operator action on â †, that is
Ââ †B̂ = (Ââ †

1 B̂, . . . , Ââ
†
MB̂)

t .
Given this set-up, the problem is to compute both the transition

probability between input and output states in the Fock basis
expressed by the quantity:

Pnm = |〈m|R̂U |n〉|
2 (3)

where |n〉 is the input state and |m〉 the desired state in output, and,
perhaps more importantly, which output states |m〉 will significantly
contribute to the total distribution. As the total number of photons
and the number of modes increase, the probability distribution of
output states becomes hard to predict and sample from with classical
computers, but it can be measured directly with linear optics devices.
In particular, each transition probability, Pnm, is proportional to the
permanent of a different submatrix of U (refs 12,32).

We observe two facts: first, that the calculation of matrix
permanents is a computationally hard problem for many classes
of matrices belonging to the complexity class #P (ref. 12) and,
second, that the space of N photons in M optical modes is iso-
morphic to the space of N molecular vibrational quanta
(phonons) in M vibrational modes. The latter connection suggests
that the dynamics of vibrational modes is computationally difficult,
at least in some instances. Moreover, as we will show, the compu-
tation of spectra requires sampling from a distribution of an
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Figure 1 | Pictorial description of boson sampling and molecular vibronic
spectroscopy. a, Boson sampling consists of sampling the output distribution
of photons obtained from quantum interference inside a linear quantum
optical network. b, Vibronic spectroscopy uses coherent light to excite
electronically an ensemble of identical molecules and measures the
re-emitted (or scattered) radiation to infer the vibrational spectrum of the
molecule. We show in this work how the fundamental physical process that
underlies b is formally equivalent to situation a, together with a step to
prepare a nonlinear step.

Table 1 | A comparison of boson sampling and the computation of vibronic transitions.

Boson sampling Vibronic transitions

Harmonic oscillators

q1(ω)

q2(ω)q́1(ω)

q́2(ω)

d

q1(ω1)

q2(ω2) q́2(ώ2)

q́1(ώ1)

Linear transform â′† = Uâ† â′† =
1
2
(J − (Jt)−1)â +

1
2
(J + (Jt)−1)â† +

1""
2

√ δ
Unitary operators Rotation Displacement, squeezing and rotation
Particle to simulate Photon Phonon
Particle in simulator Photon Photon
Outcome of simulation |Permanent|2 FCP (spectrum)

The QHOs in the first row show the corresponding two-dimensional normal coordinates (qk and q
′
l for input and output states, respectively) and their respective harmonic frequencies (ωk andωl

′). The two sets
of QHOs in boson sampling are rotated with respect to each other such that the linear relation with the rotation matrix U of the boson-creation operators are given in the second row. The two sets of QHOs in
vibronic transitions are displaced, distorted (frequency changes) and rotated with respect to each other. d is a displacement vector of the QHOs. The boson-creation operator (â′†) of the output state is now given
as a linear combination of the boson-annihilation (â) and -creation (â†) operators of the input state with the dimensionless displacement vector δ. A matrix J characterizes the rotation and squeezing operations
during a vibronic transition. This scenario applies only when U is a real matrix.
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space displacements. For CVs, this group is a Lie group
with generators q̂ and p̂. These operators satisfy the ca-
nonical commutation relation !q̂; p̂" # i (with @ # 1) and
when exponentiated give the finite phase-space translation
operators, X$s% # e&isp̂ and Z$t% # eitq̂, with s; t 2 R.
X$s% acts on a continuously indexed computational basis
state jqiq, an eigenstate of q̂, as X$s%jqiq # jq' siq.
Eigenstates of p̂ transform similarly: Z$t%jpip #
jp' tip. Transformation between the position and mo-
mentum basis is given by the Fourier transform operator
F # exp!i$!=4%$q̂2 ' p̂2%", with Fjsiq # jsip. This is the
generalization of the Hadamard gate for qubits. The con-
trolled operations CNOT and CPHASE are generalized to
controlled-X (CX) and controlled-Z (CZ), respectively.
These operators effect a phase-space displacement on the
target by an amount determined by the position eigenvalue
of the control: CX # exp$&iq̂ ( p̂% and CZ # exp$iq̂ ( q̂%,
where the order of the systems is (control ( target).

The essence of the qubit cluster-state model of QC lies
in the one-qubit teleportation circuit [18,19]. This circuit
gives the ability to teleport operations diagonal in the
computational basis onto the state in question after the
cluster has been prepared. This allows dynamics to be
performed solely through measurement. The CV analog
of the one-qubit teleportation circuit is

In this diagram, j0ip # $2!%&1=2
R
dqjqiq is a zero-

momentum eigenstate (the generalization of j'i), the con-
trolled operation indicated is a CZ gate, and D is any
operator diagonal in the computational basis (i.e., of the
form exp!if$q̂%"). The projective measurement is of q̂ and
yields a real number s, which becomes the argument of the
displacement X$) ) )% at the output of the circuit. The es-
sential feature of this circuit is that the CZ gate commutes
with any diagonal operatorD. This means that even though
D is applied after the CZ gate, it acts as if it had been
applied before. Since the operations D and Fy followed by
computational basis measurement are equivalent to a
single measurement of Dyp̂D, manipulating quantum in-
formation in the CV cluster is possible through projective
measurements alone. Concatenation of these circuits
makes it possible to implement any single-mode unitary
[8].

As is the case for qubits [20], every CV cluster state has
a graph state representation, where each node in the graph
is a separate CV mode, and each link in the graph repre-
sents a CZ that has been performed between the corre-
sponding nodes (systems). Linear graphs, where each node
has at most two links, can be used for single-mode evolu-
tions, but not multimode gates. The simplest implementa-
tion of a CZ gate involves a graph state with a link between
two adjacent quantum wires:

1 3

2 4

(2)

The lines to the left of nodes 1 and 2 indicate that a
bipartite state j i will be teleported down two quantum
wires to arrive at nodes 1 and 2. Measuring p̂ on nodes 1
and 2 leaves !X$s1%F ( X$s2%F"CZj i on nodes 3 and 4.

A small set of Hamiltonians that are polynomials in q̂
(e.g., fq̂; q̂2=2g), along with the Fourier transform, are
sufficient to implement any single-mode Gaussian [8].
Furthermore, adding the ability to perform a CZ operation
(as described above) allows implementation of all multi-
mode Gaussians. While this is not sufficient for universal
QC, given an encoding that maps all qubit Clifford opera-
tions to CV Gaussian operations (the GKP encoding being
one example [9]), this would be sufficient for many quan-
tum error correction protocols [21]. Adding to the toolbox
any single non-Gaussian projective measurement allows
for universal QC using CV cluster states [8].

Optical implementation.—Since each mode of the elec-
tromagnetic field behaves as an independent harmonic
oscillator, we can use these modes as CV systems for our
CV cluster state. To do this, we choose the computational
basis to be the ‘‘position’’ (amplitude) quadrature of quan-
tum optics for each mode. The ‘‘momentum’’ (phase)
quadrature for each mode becomes the conjugate basis.
The commutation relations !a; ay" # 1 and !q̂; p̂" # i are
satisfied by the definitions q̂ # $a' ay%=

!!!
2
p

and p̂ #
&i$a& ay%=

!!!
2
p

for each mode. In this unitless convention,
the variance of the vacuum state (which can be measured
experimentally using homodyne detection) is given by
hq̂2i # hp̂2i # 1=2.

Construction of an ideal CV cluster state requires zero-
momentum eigenstates, which cannot be normalized and
are thus unphysical. In this optical model, they represent
infinitely squeezed vacuum states, which require infinite
energy. We can approximate them, though, by finitely
squeezed vacuum states:

 j0;!ip :# $!!2%&1=4
Z
dpe&p

2=2!2 jpip; (3)

with !2 < 1 being the variance of a Gaussian wave packet
in momentum space (with hp̂2i # !2=2). The states
j0;!iq are defined analogously with p! q in Eq. (3).
Note that j0;!ip # j0;!&1iq. The fact that these states
are finitely squeezed means that we will not have perfect
fidelity while propagating quantum information through
our cluster. This will be addressed later. Given the graph
state that we wish to create, we need one independently
squeezed mode per node, and we need the ability to per-
form a CZ gate between modes in accordance with the
graph. This operation is a quantum nondemolition (QND)
interaction [22] and can be implemented using two beam
splitters and two in-line squeezers [23]. Alternatively, it
could be directly realized via a linearized optical-fiber
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Figure 1 | Layout and operation of microwave-to-optical converter. a, A
stoichiometric silicon nitride (Si3N4) membrane (light blue) that has been
partially covered with niobium (dark blue) interacts with an
inductor–capacitor (LC) circuit that forms the microwave resonator and a
Fabry–Pérot cavity that forms the optical resonator (mode shown in red).
Propagating light fields are coupled to the microwave resonator with an
inductive coupler, and to the optical resonator with a slightly transmissive
input mirror. b, The membrane is suspended within a silicon frame, and the
microwave circuitry is lithographically patterned on a separate silicon
substrate. The two silicon chips are brought together so that the
niobium-covered portion of the membrane comes to within 500 nm of the
microwave circuitry, thus forming the electromechanical system. The
system is then placed inside the optical resonator. The entire structure is
designed to be cryogenically compatible. c, A frequency domain
representation of the conversion process. A strong microwave pump (blue
arrow) is applied below the microwave resonance (response shown as a
black curve) with detuning 1e. Likewise, a strong optical pump (red arrow)
is applied below the optical resonance (response shown as a black curve)
with detuning 1o. This enables a signal (green arrow) to be up- or
down-converted in frequency.

about 9 K), and this electrically conductive portion is part of a
capacitor in an inductor–capacitor circuit that forms the microwave
resonator (K.C., in preparation)40,41. As the membrane vibrates, it
modulates the capacitance of the microwave circuit, and thus its
resonant frequency. Even though the electromagnetic resonators
are at vastly di�erent frequencies (7 GHz and 282 THz), the
coupling mechanism is equivalent: a nanometre of membrane
motion shifts the microwave resonant frequency by approximately
4 MHz, and shifts the optical resonant frequency by approximately
40 MHz, giving coupling constants of Ge ⇡4 MHz nm�1 and Go ⇡
40MHz nm�1.

During the experiment, a strong pump tone is applied below the
resonant frequency of each electromagnetic resonator. The pumps
enhance the electromechanical and optomechanical interaction,
and the mechanical resonator exchanges information with the
microwave and optical resonators at rates ge = Gexzp

pne and
go =Goxzp

pno, respectively, where xzp is the zero-point motion of
themechanical resonator and ne (no) is the number of photons in the
microwave (optical) resonator induced by the microwave (optical)
pump. The expressions for ge and go take on this simple form in the
resolved-sideband limit (defined as 4!m � e, o, where !m is the
frequency of the vibrational mode of the mechanical resonator and
e and o are the energy decay rates of the microwave and optical
resonators, respectively); however, these coupling rates can always
be independently adjusted in situ by changing the strength of the
pumps and altering ne and no (ref. 32). This coherent exchange

of information between electromagnetic and vibrational modes is
capable of quantum-state-preserving frequency conversion42,43.

A full description of the system includes the inputs and outputs of
the microwave, optical andmechanical resonators. Of all the energy
leaving the microwave (optical) resonator, only a fraction ⌘e (⌘o)
exits into the propagating mode that we collect. Some energy is
absorbed in the resonators themselves, and the optical resonator
emits light into a particular spatial mode that does not perfectly
match the spatial mode of the incident light field. The fraction of
light we collect can be expressed as ⌘e =e,ext/e and ⌘o =✏o,ext/o,
where e,ext (o,ext) is the rate at which energy leaves the microwave
(optical) resonator into propagating fields, and ✏ is the optical mode
matching. If e � ge and o � go, the electromagnetic resonators
couple energy and information in freely propagating microwave
(optical)modes to a vibrationalmode of themechanical resonator at
a rate �e (�o), which has the simple form �e =4g 2

e /e (�o =4g 2
o /o)

in the resolved-sideband limit44.
During upconversion, an injected microwave field enters the

converter at a frequency ! above the microwave pump, enters and
exits the mechanical resonator as determined by coupling rates �e
and �o, and emerges as an outgoing optical field at a frequency
! above the optical pump. A frequency-domain representation
of the process is shown in Fig. 1c. Converter performance is
characterized by how e�ciently the input microwave field, bin(!), is
transformed into an output optical field, aout(!), and vice versa. The
ratio aout(!)/bin(!) ⌘ t1(!) is one of four transmission/reflection
coe�cients that characterize the two-port network formed by the
converter (Fig. 2a). The fields bin(!) and aout(!) have units of
(number⇥ sec)1/2, and so the apparent photon number e�ciency
for upconversion is given by |aout(!)/bin(!)|2 =|t1(!)|2.

During the experiment, the converter is integrated into a larger
network. To predict and measure converter performance, we need
to specify which components are part of the converter, and which
are part of the measurement network. We choose to define the
converter as all the components between the inductive coupler
of the microwave resonator and the input mirror of the optical
resonator (Fig. 2). Converter performance then includes internal
losses in the microwave, optical and mechanical resonators and
imperfect optical mode matching, but excludes losses and gains in
other components that are used in our measurement. With this
definition, the converter is a stand-alone component that can be
readily integrated into other networks. We can predict converter
e�ciency using a Hamiltonian that includes radiation pressure
coupling45 to generate Heisenberg–Langevin equations of motion
(Supplementary Information). This analysis predicts

t1(!)=
p

�e�o

�ı (!�!m)+(�e +�o +m)/2
⇥
p

A⌘e⌘o (1)

where m is the intrinsic mechanical damping and A=AeAo is the
conversion gain, with Ae =1+ (e/4!m)2 and Ao =1+ (o/4!m)2.
The reverse process, t2(!), is mathematically identical (Fig. 2a). The
bandwidth of the conversion is set by the total mechanical damping
�e + �o + m. Conversion e�ciency is greatest on mechanical
resonance (! = !m) and when the coupling rates are matched
(�e =�o) and exceed any intrinsic mechanical damping m; in this
case, the maximum conversion e�ciency is ⌘e⌘o.

Conversion gain A becomes appreciable when 4!m <e,o (and
also depends on detunings1e and1o; Supplementary Information).
In this parameter regime, the converter begins to act like a linear,
phase-insensitive amplifier, and as such can have an apparent
e�ciency greater than unity at the cost of adding noise46. Although
amplification might be beneficial for some applications, ideal
frequency conversion requires unit gain (Ae = Ao = 1) so that
conversion adds as little noise as possible.
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Figure 1 | Layout and operation of microwave-to-optical converter. a, A
stoichiometric silicon nitride (Si3N4) membrane (light blue) that has been
partially covered with niobium (dark blue) interacts with an
inductor–capacitor (LC) circuit that forms the microwave resonator and a
Fabry–Pérot cavity that forms the optical resonator (mode shown in red).
Propagating light fields are coupled to the microwave resonator with an
inductive coupler, and to the optical resonator with a slightly transmissive
input mirror. b, The membrane is suspended within a silicon frame, and the
microwave circuitry is lithographically patterned on a separate silicon
substrate. The two silicon chips are brought together so that the
niobium-covered portion of the membrane comes to within 500 nm of the
microwave circuitry, thus forming the electromechanical system. The
system is then placed inside the optical resonator. The entire structure is
designed to be cryogenically compatible. c, A frequency domain
representation of the conversion process. A strong microwave pump (blue
arrow) is applied below the microwave resonance (response shown as a
black curve) with detuning 1e. Likewise, a strong optical pump (red arrow)
is applied below the optical resonance (response shown as a black curve)
with detuning 1o. This enables a signal (green arrow) to be up- or
down-converted in frequency.

about 9 K), and this electrically conductive portion is part of a
capacitor in an inductor–capacitor circuit that forms the microwave
resonator (K.C., in preparation)40,41. As the membrane vibrates, it
modulates the capacitance of the microwave circuit, and thus its
resonant frequency. Even though the electromagnetic resonators
are at vastly di�erent frequencies (7 GHz and 282 THz), the
coupling mechanism is equivalent: a nanometre of membrane
motion shifts the microwave resonant frequency by approximately
4 MHz, and shifts the optical resonant frequency by approximately
40 MHz, giving coupling constants of Ge ⇡4 MHz nm�1 and Go ⇡
40MHz nm�1.

During the experiment, a strong pump tone is applied below the
resonant frequency of each electromagnetic resonator. The pumps
enhance the electromechanical and optomechanical interaction,
and the mechanical resonator exchanges information with the
microwave and optical resonators at rates ge = Gexzp

pne and
go =Goxzp

pno, respectively, where xzp is the zero-point motion of
themechanical resonator and ne (no) is the number of photons in the
microwave (optical) resonator induced by the microwave (optical)
pump. The expressions for ge and go take on this simple form in the
resolved-sideband limit (defined as 4!m � e, o, where !m is the
frequency of the vibrational mode of the mechanical resonator and
e and o are the energy decay rates of the microwave and optical
resonators, respectively); however, these coupling rates can always
be independently adjusted in situ by changing the strength of the
pumps and altering ne and no (ref. 32). This coherent exchange

of information between electromagnetic and vibrational modes is
capable of quantum-state-preserving frequency conversion42,43.

A full description of the system includes the inputs and outputs of
the microwave, optical andmechanical resonators. Of all the energy
leaving the microwave (optical) resonator, only a fraction ⌘e (⌘o)
exits into the propagating mode that we collect. Some energy is
absorbed in the resonators themselves, and the optical resonator
emits light into a particular spatial mode that does not perfectly
match the spatial mode of the incident light field. The fraction of
light we collect can be expressed as ⌘e =e,ext/e and ⌘o =✏o,ext/o,
where e,ext (o,ext) is the rate at which energy leaves the microwave
(optical) resonator into propagating fields, and ✏ is the optical mode
matching. If e � ge and o � go, the electromagnetic resonators
couple energy and information in freely propagating microwave
(optical)modes to a vibrationalmode of themechanical resonator at
a rate �e (�o), which has the simple form �e =4g 2

e /e (�o =4g 2
o /o)

in the resolved-sideband limit44.
During upconversion, an injected microwave field enters the

converter at a frequency ! above the microwave pump, enters and
exits the mechanical resonator as determined by coupling rates �e
and �o, and emerges as an outgoing optical field at a frequency
! above the optical pump. A frequency-domain representation
of the process is shown in Fig. 1c. Converter performance is
characterized by how e�ciently the input microwave field, bin(!), is
transformed into an output optical field, aout(!), and vice versa. The
ratio aout(!)/bin(!) ⌘ t1(!) is one of four transmission/reflection
coe�cients that characterize the two-port network formed by the
converter (Fig. 2a). The fields bin(!) and aout(!) have units of
(number⇥ sec)1/2, and so the apparent photon number e�ciency
for upconversion is given by |aout(!)/bin(!)|2 =|t1(!)|2.

During the experiment, the converter is integrated into a larger
network. To predict and measure converter performance, we need
to specify which components are part of the converter, and which
are part of the measurement network. We choose to define the
converter as all the components between the inductive coupler
of the microwave resonator and the input mirror of the optical
resonator (Fig. 2). Converter performance then includes internal
losses in the microwave, optical and mechanical resonators and
imperfect optical mode matching, but excludes losses and gains in
other components that are used in our measurement. With this
definition, the converter is a stand-alone component that can be
readily integrated into other networks. We can predict converter
e�ciency using a Hamiltonian that includes radiation pressure
coupling45 to generate Heisenberg–Langevin equations of motion
(Supplementary Information). This analysis predicts

t1(!)=
p

�e�o

�ı (!�!m)+(�e +�o +m)/2
⇥
p

A⌘e⌘o (1)

where m is the intrinsic mechanical damping and A=AeAo is the
conversion gain, with Ae =1+ (e/4!m)2 and Ao =1+ (o/4!m)2.
The reverse process, t2(!), is mathematically identical (Fig. 2a). The
bandwidth of the conversion is set by the total mechanical damping
�e + �o + m. Conversion e�ciency is greatest on mechanical
resonance (! = !m) and when the coupling rates are matched
(�e =�o) and exceed any intrinsic mechanical damping m; in this
case, the maximum conversion e�ciency is ⌘e⌘o.

Conversion gain A becomes appreciable when 4!m <e,o (and
also depends on detunings1e and1o; Supplementary Information).
In this parameter regime, the converter begins to act like a linear,
phase-insensitive amplifier, and as such can have an apparent
e�ciency greater than unity at the cost of adding noise46. Although
amplification might be beneficial for some applications, ideal
frequency conversion requires unit gain (Ae = Ao = 1) so that
conversion adds as little noise as possible.

322 NATURE PHYSICS | VOL 10 | APRIL 2014 | www.nature.com/naturephysics

Andrews et al, Nat. Phys. 10, 321 (2014) 

Optomechanical 
transducer

Initial stateFinal state Evolution



System 2

System 1

Interface

System 1

System 2

System 1

System 2

Squeezing restriction

Rotation + squeezing

Rotation only

ARTICLES NATURE PHYSICS DOI: 10.1038/NPHYS2911

282 THz7 GHz

Membrane

Mirror

a b

∆o∆e

7 GHz 282 THz

c

Circuit

C

L

ω ω

Figure 1 | Layout and operation of microwave-to-optical converter. a, A
stoichiometric silicon nitride (Si3N4) membrane (light blue) that has been
partially covered with niobium (dark blue) interacts with an
inductor–capacitor (LC) circuit that forms the microwave resonator and a
Fabry–Pérot cavity that forms the optical resonator (mode shown in red).
Propagating light fields are coupled to the microwave resonator with an
inductive coupler, and to the optical resonator with a slightly transmissive
input mirror. b, The membrane is suspended within a silicon frame, and the
microwave circuitry is lithographically patterned on a separate silicon
substrate. The two silicon chips are brought together so that the
niobium-covered portion of the membrane comes to within 500 nm of the
microwave circuitry, thus forming the electromechanical system. The
system is then placed inside the optical resonator. The entire structure is
designed to be cryogenically compatible. c, A frequency domain
representation of the conversion process. A strong microwave pump (blue
arrow) is applied below the microwave resonance (response shown as a
black curve) with detuning 1e. Likewise, a strong optical pump (red arrow)
is applied below the optical resonance (response shown as a black curve)
with detuning 1o. This enables a signal (green arrow) to be up- or
down-converted in frequency.

about 9 K), and this electrically conductive portion is part of a
capacitor in an inductor–capacitor circuit that forms the microwave
resonator (K.C., in preparation)40,41. As the membrane vibrates, it
modulates the capacitance of the microwave circuit, and thus its
resonant frequency. Even though the electromagnetic resonators
are at vastly di�erent frequencies (7 GHz and 282 THz), the
coupling mechanism is equivalent: a nanometre of membrane
motion shifts the microwave resonant frequency by approximately
4 MHz, and shifts the optical resonant frequency by approximately
40 MHz, giving coupling constants of Ge ⇡4 MHz nm�1 and Go ⇡
40MHz nm�1.

During the experiment, a strong pump tone is applied below the
resonant frequency of each electromagnetic resonator. The pumps
enhance the electromechanical and optomechanical interaction,
and the mechanical resonator exchanges information with the
microwave and optical resonators at rates ge = Gexzp

pne and
go =Goxzp

pno, respectively, where xzp is the zero-point motion of
themechanical resonator and ne (no) is the number of photons in the
microwave (optical) resonator induced by the microwave (optical)
pump. The expressions for ge and go take on this simple form in the
resolved-sideband limit (defined as 4!m � e, o, where !m is the
frequency of the vibrational mode of the mechanical resonator and
e and o are the energy decay rates of the microwave and optical
resonators, respectively); however, these coupling rates can always
be independently adjusted in situ by changing the strength of the
pumps and altering ne and no (ref. 32). This coherent exchange

of information between electromagnetic and vibrational modes is
capable of quantum-state-preserving frequency conversion42,43.

A full description of the system includes the inputs and outputs of
the microwave, optical andmechanical resonators. Of all the energy
leaving the microwave (optical) resonator, only a fraction ⌘e (⌘o)
exits into the propagating mode that we collect. Some energy is
absorbed in the resonators themselves, and the optical resonator
emits light into a particular spatial mode that does not perfectly
match the spatial mode of the incident light field. The fraction of
light we collect can be expressed as ⌘e =e,ext/e and ⌘o =✏o,ext/o,
where e,ext (o,ext) is the rate at which energy leaves the microwave
(optical) resonator into propagating fields, and ✏ is the optical mode
matching. If e � ge and o � go, the electromagnetic resonators
couple energy and information in freely propagating microwave
(optical)modes to a vibrationalmode of themechanical resonator at
a rate �e (�o), which has the simple form �e =4g 2

e /e (�o =4g 2
o /o)

in the resolved-sideband limit44.
During upconversion, an injected microwave field enters the

converter at a frequency ! above the microwave pump, enters and
exits the mechanical resonator as determined by coupling rates �e
and �o, and emerges as an outgoing optical field at a frequency
! above the optical pump. A frequency-domain representation
of the process is shown in Fig. 1c. Converter performance is
characterized by how e�ciently the input microwave field, bin(!), is
transformed into an output optical field, aout(!), and vice versa. The
ratio aout(!)/bin(!) ⌘ t1(!) is one of four transmission/reflection
coe�cients that characterize the two-port network formed by the
converter (Fig. 2a). The fields bin(!) and aout(!) have units of
(number⇥ sec)1/2, and so the apparent photon number e�ciency
for upconversion is given by |aout(!)/bin(!)|2 =|t1(!)|2.

During the experiment, the converter is integrated into a larger
network. To predict and measure converter performance, we need
to specify which components are part of the converter, and which
are part of the measurement network. We choose to define the
converter as all the components between the inductive coupler
of the microwave resonator and the input mirror of the optical
resonator (Fig. 2). Converter performance then includes internal
losses in the microwave, optical and mechanical resonators and
imperfect optical mode matching, but excludes losses and gains in
other components that are used in our measurement. With this
definition, the converter is a stand-alone component that can be
readily integrated into other networks. We can predict converter
e�ciency using a Hamiltonian that includes radiation pressure
coupling45 to generate Heisenberg–Langevin equations of motion
(Supplementary Information). This analysis predicts

t1(!)=
p

�e�o

�ı (!�!m)+(�e +�o +m)/2
⇥
p

A⌘e⌘o (1)

where m is the intrinsic mechanical damping and A=AeAo is the
conversion gain, with Ae =1+ (e/4!m)2 and Ao =1+ (o/4!m)2.
The reverse process, t2(!), is mathematically identical (Fig. 2a). The
bandwidth of the conversion is set by the total mechanical damping
�e + �o + m. Conversion e�ciency is greatest on mechanical
resonance (! = !m) and when the coupling rates are matched
(�e =�o) and exceed any intrinsic mechanical damping m; in this
case, the maximum conversion e�ciency is ⌘e⌘o.

Conversion gain A becomes appreciable when 4!m <e,o (and
also depends on detunings1e and1o; Supplementary Information).
In this parameter regime, the converter begins to act like a linear,
phase-insensitive amplifier, and as such can have an apparent
e�ciency greater than unity at the cost of adding noise46. Although
amplification might be beneficial for some applications, ideal
frequency conversion requires unit gain (Ae = Ao = 1) so that
conversion adds as little noise as possible.

322 NATURE PHYSICS | VOL 10 | APRIL 2014 | www.nature.com/naturephysics

Andrews et al, Nat. Phys. 10, 321 (2014) 

Optomechanical 
transducer

Initial stateFinal state Evolution

How does squeezing restriction affect interface engineering?



1. Modified Classification
Local QND gate BS, TMS, sTMS SWAP+QND SWAP

Q
P

0 1 2 2 2

2 2 2 1 0

Transmitted 
quadratures

Reflected 
quadratures
Transmission 

strength χ = 0 χ = 0 χ = 1 χ = 1χ ≠ 0,1



1. Modified Classification
Local QND gate BS, TMS, sTMS SWAP+QND SWAP

Q
P

0 1 2 2 2

2 2 2 1 0

Transmitted 
quadratures

Reflected 
quadratures
Transmission 

strength χ = 0 χ = 0 χ = 1 χ = 1χ ≠ 0,1

Irreducible squeezing Λ
Irreducible 
Shearing κ



1. Modified Classification
Local QND gate BS, TMS, sTMS SWAP+QND SWAP

Q
P

0 1 2 2 2

2 2 2 1 0

Transmitted 
quadratures

Reflected 
quadratures
Transmission 

strength χ = 0 χ = 0 χ = 1 χ = 1χ ≠ 0,1

Irreducible squeezing Λ
Irreducible 
Shearing κ

(Q2(T )
P2(T )) = (

TQQ TQP

TPQ TPP) (Q1(0)
P1(0)) + (

RQQ RQP

RPQ RPP) (Q2(0)
P2(0))

Restricted mode



1. Modified Classification
Local QND gate BS, TMS, sTMS SWAP+QND SWAP

Q
P

0 1 2 2 2

2 2 2 1 0

Transmitted 
quadratures

Reflected 
quadratures
Transmission 

strength χ = 0 χ = 0 χ = 1 χ = 1χ ≠ 0,1

Irreducible squeezing Λ
Irreducible 
Shearing κ

(Q2(T )
P2(T )) = (

TQQ TQP

TPQ TPP) (Q1(0)
P1(0)) + (

RQQ RQP

RPQ RPP) (Q2(0)
P2(0))

Restricted mode
∝ (Λ 0

0 Λ−1)
Ratio of 

singular values



1. Modified Classification
Local QND gate BS, TMS, sTMS SWAP+QND SWAP

Q
P

0 1 2 2 2

2 2 2 1 0

Transmitted 
quadratures

Reflected 
quadratures
Transmission 

strength χ = 0 χ = 0 χ = 1 χ = 1χ ≠ 0,1

Irreducible squeezing Λ
Irreducible 
Shearing κ

(Q2(T )
P2(T )) = (

TQQ TQP

TPQ TPP) (Q1(0)
P1(0)) + (

RQQ RQP

RPQ RPP) (Q2(0)
P2(0))

Restricted mode
∝ (Λ 0

0 Λ−1)
Ratio of 

singular values

Off-diagonal



Fong, Poon, HKL, arXiv:2212.05134

2. More parameters to engineer
Four interface protocol



Fong, Poon, HKL, arXiv:2212.05134

2. More parameters to engineer
Four interface protocol

Determine overall transmission strength



Fong, Poon, HKL, arXiv:2212.05134

2. More parameters to engineer
Four interface protocol

Determine overall transmission strength

Tune irreducible squeezing 
and shearing
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