JUNE 200, 2023

CAP CONGRESS 2023, UNB
EVERETT PATTERSON

Rotational Effects
on Fisher Information

of Thermal Black Hole
Parameter

UNIVERSITY OF FACULTY

Eg WATERLOOQO | oFscience




INTRODUCTION

* RQI as an approach to reconcile Q+G
 How does relativity affect Ql processes?
e Using Ql processes to probe relativistic systems

* Mostly QFT in curved spacetime

 Thermal states are an important feature of the
guantum vacuum in curved spacetime

* E.g., Hawking radiation, Unruh effect

Fisher information (Fl) is used in Relativistic Quantum Metrology (RQM) to guide the
development of experimental set ups.

* Here we use it to ‘probe’ spacetime




PREVIOUS WORK
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* Good understanding of Fl in 4-d dS and
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* Want to explore Fl behaviour in
*rotating™ BH spacetime

 Known quantum vacuum effects
{ ’
* (1) Improve ‘measurement’ procedures

* (2) Act as a spacetime discriminant




THEORY

* Most general approach to RQl requires 3 characters:

* Particle detector(s) — single UDW detector

* QFT in the underlying spacetime — massless scalar field in RBTZ

* Framework under consideration — (Thermal) Fisher information (some OQS in the background)




THEORY

B Oln p(x|€) : B 1 Op(z|€) 2
FI Definition I(ﬁ)—/p(ﬂ:l&)( 7E ) dT_/;D(:?‘lf)( e ) dx

Unruh-DeWitt (UDW) detector, interaction Hamiltonian:  Hy = Ax(7) (e“ 0™ + ¢ 07) @ p[z(7)]

While the FI definition may seem a little messy, by using the Open Quantum Systems paradigm, it is
solely dependent on the Response Rate [40] of the UDW detector:
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BTZ Wightman function is related to AdS by image sum [44]: Warz(z, 2’ Z Waas (2, T2’

n=-—0oo




THEORY

0 is the initial state of detector ‘N’ depends on Response Rate

(aTai)Q \ \

- ;2 where a3(7) = —e " cosf — R(1 — e 7)
3

* FI Definition | Z(T') =

When t—>9<0, ‘R’ describes Fisher info

R = — tanh(%)

* While the FI definition may seem a little messy, by using the Open Quantum Systems paradigm, it is
solely dependent on the Response Rate [40] of the UDW detector:
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e Where @, = (1+ 4’}T2£2T2) cosh(2mnr, /0) & 4m*0*T?




RESPONSE RATE — IN MORE DETAIL

inner radius

/

1 Q n—x 1827
JFRBTZ = 1 [1 — tanh (ﬁ)] Z e#[

* Same Response Rate, but bigger:

n——0oo

« Where uﬁ — (1 + 4?T2€2T2) cosh (277 /) + A2 02T?
outer radius
* Note the Radii are what distinguish the black hole spacetimes

* The BTZ mass and angular momentum can be expressed in terms of these radii:




[2207.12226] Fisher Information of a

Black Hole Spacetime (arxiv.org)
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When Q =T, we see a monotonic decrease in the Fl for increasing mass

Whereas for Q # T, we see an oscillatory behaviour

This suggests that ‘tuning’ the detector to the mass and temperature can indeed improve
estimation
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In both flat and curved spacetimes, there are weak and strong versions of the anti-Unrub/anti-Hawking
effects, in which the Kubo-Martin-Schwinger ficld temperature is anticorrelated with the response of a
detector and its inferred temperature. We investigate for the first time the effects on the weak and strong
anti-Hawking effects for an Unruh-DeWitt detector orbiting a Banados-Teitelboim-Zanelli black hole in the
corotating frame. We find that rotation can significantly amplify the strength of the weak anti-Hawking
cffect, whereas it can either amplify or reduce the strength of the strong anti-Hawking effect depending on
boundary conditions. For the strong anti-Hawking effect, we find a nonmonotonic relationship between the
angular momentum and detector temperature for each boundary condition. In addition, we note that the
weak anti-Hawking effect is independent of a changing AdS length, while a longer AdS length increases
the temperature range of the strong anti-Hawking effect.

DOI: 10.1103/PhysRevD.106.045018

[2107.01648] Anti-Hawking Phenomena
around a Rotating BTZ Black Hole (arxiv.org)

[2010.14517] Entanglement Amplification
from Rotating Black Holes (arxiv.org)

Why Rotating Black Holes:

* Rotating BTZ Black Holes have exhibited
* Amplification of Entanglement Harvesting
Most pronounced for small black holes
* Also demonstrate
Anti-Hawking effect
Dependent on BH mass

Very dependent on spacetime boundary
conditions
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Of note:

When (Q, T) = (0.1, 0.1), varying J leaves the Fl
mostly unchanged

When (Q, T) = (1, 0.1) aka Cold,

Increasing J leads to dramatic increase in Fl for
transparent ({ = 0) and Neumann (= -1) boundary
conditions,

e Most dramatic between J=0.5M and J=0.95M

But a slight decrease for Dirichlet (= 1) boundary
condition

When (Q, T) = (0.1, 1) aka Hot,

Increasing J leads to increase in Fl for transparent
(C=0) and Neumann (= -1) boundary conditions,

*  Though not so dramatic

And still a slight decrease for Dirichlet ((=1)
boundary condition




Rotating BTZ for M=1, Of note:
Varying J/M

e When (Q, T)=(0.1, 0.1), varying J leaves the Fl
W, 177/,M, ¢, ¢)=(1,01,1, -1, 0) mostly unchanged

— JM =0 * When (Q, T) =(1, 0.1) aka Cold,

JM =0.5 * Increasing J leads to dramatic increase in Fl
J/M =0.95 for transparent ({ = 0) and Neumann ({=-1)
— J/M =0.99 boundary conditions,

— J/M = 0.9999 * Most dramatic between J=0.5M and

=0.95M
— J/M =0.999999 1=0.95
* But a slight decrease for Dirichlet ({= 1)
boundary condition

e Hotis similar to Cold




Rotating BTZ for M=1,
Varying J/M
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When (Q, T) =(0.1, 0.1), varying J leaves the FI
mostly unchanged

When (Q, T) = (1, 0.1) aka Cold,

* Increasing J leads to dramatic increase in Fl
for transparent ({ = 0) and Neumann ({ = -1)
boundary conditions,

e Most dramatic between J=0.5M and
J=0.95M

But a slight decrease for Dirichlet ({=1)
boundary condition

Hot is similar to Cold




Rotating BTZ for M=0.01, Of note:
Varying J/M

Transparent ({ = 0) Neumann (Z = -1) Dirichlet (Z = 1) The distinction in the Fl based on the boundary
condition () persists
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F F

/ - However, when (Q, T) = (1, 0.1) aka Cold,

* increasing J leads to significant decrease in Fl for
transparent ({ = 0) and Neumann ({ = -1) boundary

conditions,
| but an increase for Dirichlet ({ = 1) boundary
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When (Q, T) = (0.1, 1) aka Hot,

* increasing J leads to slight shift in the time of the
maximal Fl for all boundary conditions
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boundary condition




Rotating BTZ for M=0.01, Of note:
Varying J/M

The distinction in the Fl based on the boundary
W2, T/, M, ¢, ¢)=(1,01,0.01, -1, 0) condition (2) persists

F

1.0 JIM =0 However, when (Q, T) = (1, 0.1) aka Cold,

JM = 0.5 * increasingJ leads to significant decrease in Fl for
JIM =0.95 transparent ({ = 0) and Neumann ({ = -1) boundary
conditions,

0.8

0.6 — J/IM =0.99
but an increase for Dirichlet ({ = 1) boundary
04 | — J/M =0.9999 condition

- — J/M = 0.999999 When (Q, T) = (0.1, 1) aka Hot,
* increasing J leads to slight shift in the time of the

maximal Fl for all boundary conditions

but still a slight decrease for Dirichlet (= 1)
boundary condition




Rotating BTZ for M=0.01,
Varying J/M
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Of note:

The distinction in the Fl based on the boundary
condition () persists

However, when (Q, T) = (1, 0.1) aka Cold,

* increasing J leads to significant decrease in Fl for
transparent ({ = 0) and Neumann ({ = -1) boundary
conditions,

but an increase for Dirichlet ({ = 1) boundary
condition

When (Q, T) = (0.1, 1) aka Hot,

* increasing J leads to slight shift in the time of the
maximal Fl for all boundary conditions

but still a slight decrease for Dirichlet (= 1)
boundary condition




CONCLUSION WATERLOO | v .

We find that

* Varying the angular momentum J/M does lead to change in the Fl, especially for near extremal
rotation

* It can both significantly amplify or de-amplify the FI depending on
e the boundary condition { and
e the BTZmass M

* more like anti-Hawking results than entanglement harvesting
Future work:
* Quantum Fisher information [52] analysis in 2+1 Dimensions

* More realistic Fisher information analysis: 3+1 Dimensional Spacetimes
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FISHER INFORMATION

Quantification of the parameter estimation problem,

Given (X, Z), the set of possible values for the observable and underlying parameters, respectively,

Estimator & : X" — = issaid to be unbiased if Expectation Value = True Value of Parameter

73 rl8) \ 0§

: 2 : 2
i oefrition | T(€) — /p(mlg)(alnﬁ(m\f)) . /p(l (0pgm|£)) I

L
Z(¢)

Cramér-Rao bound Var(ﬁ) >




UNRUH-DEWITT (UDW) DETECTOR

Two-level quantum system with states |0)p and 11)p separated by an energy gap 2

Conformally couple to massless scalar field, @(x), via interaction Hamiltonian:
HI _ A(E:*,EETJ—{— 4+ E—ﬂ!’rg—) R (}5(33(7'))

Where ot = |1>D<O‘D, S |O)D<1|D-

Tc J:: ' r i
Has response function £'({1) = f d'ff dr' e T W(x(r),z(r')) )
— 0 — T
-l

And response rate  JF({2}) = j AT o AT W(AT) ,where AT =7 — 7/,

— &0




SPACETIMES

* First consider AdS;, then BTZ

« AdS; stems from induced metric on a 3-d hyperboloid X12 + X§ — le — TQZ = ¢

« Where £ isthe AdS length
» Embedded in 4-d flat geometry dS? = dX? + dX% — dT? — dT3

* With coordinates (XerQ:TlaTZ)




SPACETIME — ADS,

Transformations

Metric

Wightman

r2 P2
T, =1/ 72 cosh®, X, =1/ E—ES'III]I(I-",

"2 t 2 t
15 —Pﬂ;—g—lamhf Xg—h#;—Q—ILUHhE

2 (2

2 2 -1
I 1) dt® + (— — 1) dr? + r2d®?

1

_ L §
 AniV2 (wa(:r:,;;r:’) Vo(z,z') + 2)

=T + (X2 = X3)° = (T - T3)°]



SPACETIME — STATIONARY BTZ

2 72

* Transformations hi=t M2 cosh(v' A Cb) X1 =¢ M2 sinh(VMg), with:

2 | r2 w.ffl,f t
T, = ¢ ﬁ’}ﬁ 1 3111]1 ny s 1 cosh identification ¢ ~ ¢ + 27

2 2 —1
«  Metric ds? = — (;—2 - M) dt? + (;—2 — M) dr? + r2dd?

oo

* Wightman ] , 1 [ 1 ¢ ]
W T, T ) = —
ETZ( ) 4?_[_\@{; T-L:Z_DD A .-".f_Tn I'.Tn + 2

-~ 2 _ _
T r rh fh)

Ty +— —5 cosh I:T—h(&(p — 2?TTL)j| — 1= \/(
N 4

h

m]

cosh [




SPACETIME — ROTATING BTZ

e Very similar to Stationary BTZ

. Metric:  ds® = — (N*)"dt* + f2dr® + (d¢ + N?dt)’

‘ ‘ Tz 7'2 . .o
* Where NI = = \/_M_|_ ;_j + ﬁ, M = % ,and r_ and 7y are the inner and outer radii,

N? = -5 J = #%= s the angular momentum.

*  Wightman W oy 1 - L ¢
ETZ(Ij Wk ) 4?'[_\/§P ”:Z ;JH A ;JTL + 2

=D




SPACETIME — ROTATING BTZ

oo

1 1
. : ° W o) = E —
Wightman function appears to be unchanged prz(T, ") =T pa [ﬁ —

« Butthe squared distance is now  on(z,2') = =1+ +/a Cosh[ g (B¢ —2mn) — ﬁ(At)]
- J(acr) ~T)(a(r’) — 1) cosh | 2%

r2_p2
e Where a(r) = =

e And Ad:=¢ — ¢
At i =t —t




DERIVATIONS — ADS RESPONSE RATE

* For AdS, we consider the constantly accelerating trajectory  Zp(7) :

e Corresponding to a stationary detector in Rindler coordinates

T } J . 1 1
* The Wightman function is then given by Waas(z,7') = 8wl\/f(Rp) (\/ sinh?(A7/(2y/F(Rp)¢))

C )
*  Where we substituted Rp by the KMS - —
temperature \/l/f(RD) — sinh*(A7/(2y/f(Rp)?))

V-1 1 1 _ 1 1 B ¢
ol 2l /f(Rp) 4 \/— sinh?(ArxT) \/47r2€2'T2 — sinh?(A7nT)

T =




DERIVATIONS — ADS RESPONSE RATE

* The response rate can then be expressed as

—iQz/(7T)

C 00 e—in/(?n’T)
. — Re/ dz
sinh 2 21v/2 0 V1 + 87202T? — cosh 2

€

1 © ¢
o=t = =P dz
Fass = 1= o V/_Qo

* Where we performed the substitution 2z = 7T AT

e Performing the integrals, we find that

1 Q
Fads = 1 [1 — tanh (ﬁ)] X {1 _CP_%.F% (1 +87T2€2T2)}




DERIVATIONS — STATIONARY BTZ RESPONSE RATE

* For BTZ, we consider the stationary detector trajectory «p(7) :={t=7/yp,r = Rp, ¢ = ®p}

p=1/E _
P=V 2~ isthe redshift factor

* Following a very similar approach to that employed in Ads, we find that the response rate is given by

]—"BTZ:i ll—tmh( )] i [P 1,0 a, ) —CP_ 1,40 (f}f:)]

« Where af = +47°0*T? + (1 + 47%0*T?) cosh [27?71\/5\-{]




DERIVATIONS — ROTATING BTZ RESPONSE RATE

« For BTZ, we consider the co-rotating detector trajectory zp(7) :={t={7/vyp,r = Rp, ¢ =r_7/(r:p)}

« Where 7p = /(r2 —12)(r3 —r2)/r; is the redshift factor

* Once more, following a similar approach to that employed in AdS, we find that the response rate to be

1 Q n=o idnr_
FRrRBTZ = 1 [1 — tanh (ﬁ)] Z e T {P_%Jr% (cosha;) — (:P_%Jr% (cosh 0:;';)]

n=—00

e Where a; = (1+47**T?) cosh(2mnr_/¢) + A>T




DERIVATIONS — SPACETIMES

For AdS, we consider the constantly accelerating trajectory zp(7) :=

* Corresponding to a stationary detector in Rindler coordinates
For Stationary BTZ, the detector trajectory is stationary: xp(t):={t=7/vp,r=Rp, p = Pp}

For Rotating BTZ, the detector trajectory is co-rotating: xp(7) :=={t =4{1/yp, 7= Rp, ¢ =r_7/(ry7p)}

In these, \/f(Rp) and f)/D are the redshift factors in the appropriate spacetimes and
are dependent on the radial position of the detector, R,




DERIVATIONS — FISHER INFORMATION

* Overall Hamiltonian  H = Hp + Hy + Hy Hp = %Q{IL(}D = %Q(|[}}D <E}|D — | p (1 p)

H, >k wkaLak

* von Neumann eq.

HI _ )\( LSZTO_+ +e LSZT )®¢( ( ))
8.-0‘&01;

Or - _i[H: .-Otut]

States:

* Master equation of Kossakowski-Lindblad form

dpp(T) ‘
— _i[H. I
or i|Hea, pp(7)] + Llpp(7)] State of the detector

Describes time-evolution of detector




FI DERIVATION

. —i[Hes, pp(7)] + Lpp(7)]
* In more detail...

3
1
Llp] = 5 Z Cij (20po; — 0505p — po;o;)

ij=1

A —iB
B A

Kossakowski matrix
elements depend on the |:>
response rate




FI DERIVATION

dpp(T)

or = —i[Heg, pp(7)] + L{pp(7)] admits an analytic solution

e Surprisingly,

 Given the initial state cos g |0) + sin % 1), parametrized by §

1

=3 (I +a(1)-0o), where

* We have P(’T)

a = ({11, as, l’lg) _ E—AT,’E

a(7) sin 6 cos 7,

o = (01,02,03) az(7) = e~ A7/2 5in @ sin Qr,

The third Bloch vector term is

[l’lg(T) = —e 7 cosf — R(1 — e_“j"‘r)] dependent on a ratio of
4 Kossakowski matrix elements

R = B/A = —tanh (%)




FI DERIVATION

S , 1 /0p 2 1 op\ ° B 1 op\ °
Flfhermformatlon I(&) — ;} (3_6) + l——p (_8—5) — p(l —p) (05)

For 2-d system

1
Where p="Tr(p|0)p(0lp) = (1 + as)

l—p= %(1—:’13)
Fisher Information

2 Oras)?
= (9¢as) , Which for us will be [I(T) — ( Tﬂg)z ]

1l —as 1 — a3

* Parametersatplay: (7,€2,60,¢,(,(M)) and

X —
Temperature \ BTZ Mass Angular
Energy gap Boundary condition momentum

Initial state AdS length




AdS BTZ
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4-d AdS
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Figure 5: A gallery of different qualitative behaviors of the time evolution of Fisher information

(1] H. Duand R.B. Mann, Fisher information as a probe of spacetime structure:
relativistic quantum metrology in (A)dS, JHEP 112, 2021.
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" 50 100 © s

(T, 12,1,8)=(0.2,01,1,0)

0

Boundary condition: — Transparent — Dirichlet — Neumann

50 100 150 200
(T, 02,1,4)=(02,1.5,1,0)

There are 8 distinct qualitative behaviours
e Behaviour 4 is the same as behaviour 3
Curve colour indicates boundary condition

* Black = Transparent (Z=0)

e Blue = Dirichlet (¢=1)
 Red = Neumann ((=-1)




Rows have fixed Q,T

(T, 12,1,¢6)=(1,1,1,0)

0 30 40
(T,02,1,8)=(01,1,1,0)

20 40 60 80
(T, 42,1, ¢)=(0.1,01,1,0)

AdS

Columns have fixed 6

@2,(@=-01, [G)

(T,2,1,4)=(1,1,1, 7/2)

0 20 30 0 50
@D -@od1, 712)

=

10 20 30 w0 50
(T, 02,1,6)=(01,1,1, 7/2)

20 40 60 80
(T, 42,1, 7/2) =(0.1,01, 1, 7/2)

20 a0 (1] 80
(T, 2, @:(0.1, 0.1, 1@

500

o 100 200 300 400 500" 0

Boundary condition: — Transparent — Dirichlet — Neumann

(T, 42,1,4)=(1,1,1,0)

BTZ

(T,41,1,6)=(1,1,1, 7/2)

o 40 50

0 20 30 0 50
G :); ) :.@1,/7/2)

20 EN
(T,02,1,#)=0(01,1,1,0)

20 40 60 80
(T,4,1,6)=(01,01,1,0)

30 40 50
(T, 02, 1,#)=(01,1,1, 7/2)

60
(T, 42,1, 7/2) =(0.1,0.1, 1, 7/2)

02

(T, 42, @r(l, 1, 1@

100 200 300

0

01[
T T
0

500 0 100 200 300 400 500

Boundary condition: — Transparent — Dirichlet — Neumann




(Q,T)=(1,1)

—
FT
=)
1

=
c
-
o
=
1

-
¢

(Q, T)=(0.1,0.1)

6=0

AdS vs. BTZ

0=m/2

B=mn

(£, Tr, #) =(1,1,0)

¥ Tr #) =101, 1.0

(2. T7, &) =11, 1, 7/2)

20
f¥.Tr £) =101, 1, x/2)

(2, T7, #) =(1,1,.1)

20 30 40
(2, Tr, #)=(01,1,7)

0

20 40

N

N [ 0

80

40 60 L

100

¥, T/, &) =(1,01,7)

a0 40 60

80

(. Tr, ) =(0.1,01,0)

(42, T/, #)=(01,01, x/2)

(M, T, #) =(01,01, 1)

Dirichlet (AdS)
Neumann (AdS)

Transparent (BTZ)

—— Dirichlet (BTZ)
—— Neumann (BTZ)

Of note:

AdS is dashed lines; BTZ is solid lines

When Q=T, AdS and BTZ coincide

e Asshown in 1%t and 4t row

When Q # T, discrepancy between AdS and BTZ
* ‘Hot’ when Q=0.1<T=1
* Dirichlet actually coincides here
* ‘Cold’ when Q=1>T=0.1

* Qualitatively distinct behaviours present
for all boundary conditions

BTZ mass is fixed at M=1 here

* What if we vary the mass...




0

8=0

(2,7, 8, ) =(01,0.1,0,0)

10 20 20
02, 17,6, ¢)=(01,01,0, -1)

10 20 30
2,77, 8,8 =(01,01,0,1)

100 200 300

BTZ for Q=T =0.1

0 =m/2

2,77, 8, &) =(0.1,0.1, 7/2, 0)

10 20 30
W2, T, #, &) =(01,01, 7/2, =1)

10 20 30
(2, T, 6,8 =(01,01, 72, 1)

B=mn

2,17, 8, ) =(0.1,01, 7,0)

10 20
(120,77, 6,¢)=(01,01, 7, -1)

10 20
W, T8, ) =(01,01, 7, 1)

Mass, M: — 0.01

0.05

Of note:

Different masses are represented by different
colours

* Increasing mass from M=0.01 to M=1.5
corresponds to moving along the rainbow
spectrum (ROYGBV)

Here we have Q=T -> likely more simple

* No (significant) change in qualitative
behaviour

Increasing M seems to shift curve right
Slight amplification at times

* between 0.1 and 0.5 (yellow-> green)




BTZforQ>T ‘Cold’

6=0 0=m/2 O=m

Y, TF & &) =i1,01,0,0)

¥, T F#, 5 =1, 01, 72, 0) . T8 ) =01, 01, 7,

[ 20 30 &0 50
.77, 8, ) =i1,0.1,0, =1) (¥, T 8, S =(1,01, 52, =1)

30 a0 5

10 E | 0 30 & |
¥, TF & S =11,01,01) ] 2, T &, ) =1, 01, 7,

| :
\ | Y
/ \
/

0 = 50 0 ") 50 10 el 30

Mass, M: — 0.01 — 0.05

40

01 —05 —1 — 15

Of note:

Different masses are represented by different
colours

* Increasing mass from M=0.01 to M=1.5
corresponds to moving along the rainbow
spectrum (ROYGBV)

No clear trend in Fisher information alongside the
changing mass

Most drastic behaviour appears again between
0.1 and 0.5 (yellow-> green)




BTZforQ>T ‘Cold’

¢, T, 60, ¢) =(,0.1,0,0)

Of note:

Different masses are represented by different
colours

* Increasing mass from M=0.01 to M=1.5
corresponds to moving along the rainbow
spectrum (ROYGBV)

No clear trend in Fisher information alongside the
changing mass

Most drastic behaviour appears again between
0.1 and 0.5 (yellow-> green)

ZOOMED




v

* Oscillatory behaviour can be seen in the ‘wave’ pattern

* Forlarger Q, we see even greater amplitudes and more oscillations

* Note the change in scale
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BONUS CONTENT —WHAT IS THE DEFN OF QFI

In essence QFl is the maximal Fl obtained over all possible measurements

before. For a given measurement scheme on the guantum system within state p. FI relates with a measurement
outcome £ of a positive operator valued measurement (POVM) {E(£)}, and takes the form of

fAlnp(£]8)N°
Feld) = g8 ——= 10
c(8) ;pc | J( B ) (10)

where p(£]4) is the conditional probability of obtaining £ w.r.t. a chosen POVM and given initial state (7). From
(5}, we observe that the initial states of the detector characterized by @ and evolving time 7 would play an important
role in the metrology process, and eventually determine the ultimate bound on precision. Optimizing (10) over all
the possible quantum measurements of the state (7). we define the ()F] of estimation as Fg(d) = llnx“_:.m}ﬁ [ 3).

saturated by an optimal POVM and can be caleulated in terms of the symmetric logarithmic derivative (SLD) operator
as Fol(8) = Tr[p(5)L3]. where SLD Lg satisfies dgp = %{p. Ls}. In particular, for a density matrix admitting
decomposition (9), QFI can be further explicitly expressed as [50, 51]

(BaA:)? 20 =N s 2
FolB) = Z X T Z T}uh"- il@avy) (11)

i=% iFj==%

where the summations involve sums over all A; (0 and A; + A; # (), respectively.




BONUS CONTENT —BOUNDARY CONDITIONS

e Dirichlet
* The field vanishes at the boundary
* Neumann
* The field’s normal derivative vanishes at the boundary
* Transparent
e Thisis described in detail in a 1978 PRD paper by Avis, Isham, and Storey.

It is a little peculiar in its definition, but it enables conservation of energy, angular momentum, etc.




BTZ; ell=1 , Omega=T=0.1

(2, T,1,8,¢)=(01,01,1,0,0)

10 T 20 0
2, 7,1,¢,)=(01,01,1,0, -1)

20 0
W2, T, L6, ¢)=(01,01,1,0,1)

a0

Mass, M: — 0.01 0.05 01 05 — 1

(2, T,1,8,¢)=(01,01,1, 7/12,0)

" 20 0
(2, T,1,¢,¢)=(01,01,1, 712, -1)

20 30
2, T,1,¢,¢)=(01,01,1, 7/2, 1)

T10 200 a00

£2,T,1,8,¢)=(01,01,1, 7,0

10 20 0
2,718 0=(01,01,1,r -1)

(2,718, £)=(01,01,10,0,0)

(2, T.18,0)=(01,01,10,7/2,0)

BTZ; ell=10 , Omega=T=0.1

2,716, ,¢)=001,01,10,70)

w0 200 T
W2, T,1¢ ¢)=(01,01,1,7,1)

20 30
(2, T,1,8,¢)=(01,01,10,0, -1)

20 30
2, 7,14, ¢)=(01,01, 10, 7/2, 1)

10 20 30
2, T,16,0)=(01,01,10, 7, -1)

10 20 30

20 30

10 20 30

(2, 7,18, £)=(01,01,10,0,1)

2, T.14 4)=(01,01,10,7/2,1)

2,716 4)=(01,01,10,7,1)

40 60 20

Mass, M: — 0.01 — 0.05 01 — 05 —1




2, 7,1,¢,)=(1,01,1,0,0)

BTZ; ‘cold’, varying M

2,7, 1,6,{)=(1,01,1,7/2,0)

20 40 60 80
2,7T,1,6,{)=(1,01,1,0,-1)

2, 7,L4,)=(1,01,1,7,0

W2, T.1,8,¢)=(01,1,1,0,0)

BTZ; ‘hot’, varying M

2, T,1,6,8)=(01,1,1,7/2,0

40 80 80
W2, T,1.6,¢)=(1,01,1,7/2, -1)

40 60 80
2, T,1,6,¢)=(1,01,1,.7, -1)

20 40 60 80
(2, 7T,1,¢,{)=(1,01,1,0,1)

40 60 80
(@2, T,1,8,{)=(1,01,1,7/2,1)

20 40 80 80
(R2,7,1,6,)=(1,01,1,7,1)

00 " ) T 40 T80

Mass, M: — 0.01 0.05 0.1

20 30
@2, 1,L6,{)=(01,1,1,0, -1)

20 30
WL, T,16,)=(01,1,1,7/2, -1)

=—
WL T, 1,6, =(01,1,1,0,1)

20 30
2, T, 4)=(01,1,1,x/2,1)

=

100 0 20 40 60 80 100 °

Mass, M: — 0.01 0.05 01 05 —1 — 15

2, T,L6,)=(01,1,1,7,0)

10 20 30
WL, T, L )=(01,1,1,x,-1)

———
(2, T,1,8,)=(01,1,1,7,1)




