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INTRODUCTION

• RQI as an approach to reconcile Q+G 

• How does relativity affect QI processes?

• Using QI processes to probe relativistic systems

• Mostly QFT in curved spacetime

• Thermal states are an important feature of the 
quantum vacuum in curved spacetime

• E.g., Hawking radiation, Unruh effect

• Fisher information (FI) is used in Relativistic Quantum Metrology (RQM) to guide the 
development of experimental set ups.

• Here we use it to ‘probe’ spacetime
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PREVIOUS WORK

• Good understanding of FI in 4-d dS and 
AdS, and 3-d AdS and BTZ

• BH mass effect

• Want to explore FI behaviour in 
*rotating* BH spacetime

• Known quantum vacuum effects

• (1) Improve ‘measurement’ procedures

• (2) Act as a spacetime discriminant 

3



THEORY

• Most general approach to RQI requires 3 characters:

• Particle detector(s) – single UDW detector

• QFT in the underlying spacetime – massless scalar field in RBTZ

• Framework under consideration – (Thermal) Fisher information (some OQS in the background)
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THEORY

• FI Definition

• Unruh-DeWitt (UDW) detector, interaction Hamiltonian:

• While the FI definition may seem a little messy, by using the Open Quantum Systems paradigm, it is 
solely dependent on the Response Rate [40] of the UDW detector:

• BTZ Wightman function is related to AdS by image sum [44]:
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THEORY

• FI Definition where

• While the FI definition may seem a little messy, by using the Open Quantum Systems paradigm, it is 
solely dependent on the Response Rate [40] of the UDW detector:

• Where
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When τ→∞, ‘R’ describes Fisher info

‘A’ depends on Response Rateθ is the initial state of detector



RESPONSE RATE – IN MORE DETAIL

• Same Response Rate, but bigger:

• Where

• Note the Radii are what distinguish the black hole spacetimes

• The BTZ mass and angular momentum can be expressed in terms of these radii:
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• When Ω = T, we see a monotonic decrease in the FI for increasing mass

• Whereas for Ω ≠ T, we see an oscillatory behaviour

• This suggests that ‘tuning’ the detector to the mass and temperature can indeed improve 
estimation

8

Static BTZ
Cold, Ω > T

[2207.12226] Fisher Information of a 
Black Hole Spacetime (arxiv.org)

https://arxiv.org/abs/2207.12226


Why Rotating Black Holes:Previous work

• Rotating BTZ Black Holes have exhibited

• Amplification of Entanglement Harvesting

• Most pronounced for small black holes

• Also demonstrate

• Anti-Hawking effect

• Dependent on BH mass

• Very dependent on spacetime boundary 
conditions
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[2107.01648] Anti-Hawking Phenomena 
around a Rotating BTZ Black Hole (arxiv.org)

[2010.14517] Entanglement Amplification 
from Rotating Black Holes (arxiv.org)

https://arxiv.org/abs/2107.01648
https://arxiv.org/abs/2010.14517


Of note:Rotating BTZ for M=1, 

Varying J/M

• When (Ω, T) = (0.1, 0.1), varying J leaves the FI 
mostly unchanged

• When (Ω, T) = (1, 0.1) aka Cold, 

• Increasing J leads to dramatic increase in FI for 
transparent (ζ = 0) and Neumann (ζ = -1) boundary 
conditions, 

• Most dramatic between J=0.5M and J=0.95M

• But a slight decrease for Dirichlet (ζ = 1) boundary 
condition

• When (Ω, T) = (0.1, 1) aka Hot, 

• Increasing J leads to increase in FI for transparent 
(ζ = 0) and Neumann (ζ = -1) boundary conditions, 

• Though not so dramatic

• And still a slight decrease for Dirichlet (ζ = 1) 
boundary condition
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Of note:Rotating BTZ for M=1,

Varying J/M

• When (Ω, T) = (0.1, 0.1), varying J leaves the FI 
mostly unchanged

• When (Ω, T) = (1, 0.1) aka Cold, 

• Increasing J leads to dramatic increase in FI 
for transparent (ζ = 0) and Neumann (ζ = -1) 
boundary conditions, 

• Most dramatic between J=0.5M and 
J=0.95M

• But a slight decrease for Dirichlet (ζ = 1) 
boundary condition

• Hot is similar to Cold
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Of note:Rotating BTZ for M=1, 

Varying J/M

• When (Ω, T) = (0.1, 0.1), varying J leaves the FI 
mostly unchanged

• When (Ω, T) = (1, 0.1) aka Cold, 

• Increasing J leads to dramatic increase in FI 
for transparent (ζ = 0) and Neumann (ζ = -1) 
boundary conditions, 

• Most dramatic between J=0.5M and 
J=0.95M

• But a slight decrease for Dirichlet (ζ = 1) 
boundary condition

• Hot is similar to Cold
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Of note:Rotating BTZ for M=0.01, 

Varying J/M

• The distinction in the FI based on the boundary 
condition (ζ) persists

• However, when (Ω, T) = (1, 0.1) aka Cold, 

• increasing J leads to significant decrease in FI for 
transparent (ζ = 0) and Neumann (ζ = -1) boundary 
conditions, 

• but an increase for Dirichlet (ζ = 1) boundary 
condition

• When (Ω, T) = (0.1, 1) aka Hot, 

• increasing J leads to slight shift in the time of the 
maximal FI for all boundary conditions

• but still a slight decrease for Dirichlet (ζ = 1) 
boundary condition
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Of note:Rotating BTZ for M=0.01, 

Varying J/M

• The distinction in the FI based on the boundary 
condition (ζ) persists

• However, when (Ω, T) = (1, 0.1) aka Cold, 

• increasing J leads to significant decrease in FI for 
transparent (ζ = 0) and Neumann (ζ = -1) boundary 
conditions, 

• but an increase for Dirichlet (ζ = 1) boundary 
condition

• When (Ω, T) = (0.1, 1) aka Hot, 

• increasing J leads to slight shift in the time of the 
maximal FI for all boundary conditions

• but still a slight decrease for Dirichlet (ζ = 1) 
boundary condition
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Of note:Rotating BTZ for M=0.01, 

Varying J/M

• The distinction in the FI based on the boundary 
condition (ζ) persists

• However, when (Ω, T) = (1, 0.1) aka Cold, 

• increasing J leads to significant decrease in FI for 
transparent (ζ = 0) and Neumann (ζ = -1) boundary 
conditions, 

• but an increase for Dirichlet (ζ = 1) boundary 
condition

• When (Ω, T) = (0.1, 1) aka Hot, 

• increasing J leads to slight shift in the time of the 
maximal FI for all boundary conditions

• but still a slight decrease for Dirichlet (ζ = 1) 
boundary condition
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CONCLUSION

We find that

• Varying the angular momentum J/M does lead to change in the FI, especially for near extremal 
rotation

• It can both significantly amplify or de-amplify the FI depending on 

• the boundary condition ζ and 

• the BTZ mass M

• more like anti-Hawking results than entanglement harvesting

Future work:

• Quantum Fisher information [52] analysis in 2+1 Dimensions

• More realistic Fisher information analysis: 3+1 Dimensional Spacetimes
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FISHER INFORMATION

• Quantification of the parameter estimation problem, 

• Given , the set of possible values for the observable and underlying parameters, respectively,

• Estimator is said to be unbiased if Expectation Value = True Value of Parameter

• FI Definition

• Cramér-Rao bound
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UNRUH-DEWITT (UDW) DETECTOR

• Two-level quantum system with states and separated by an energy gap

• Conformally couple to massless scalar field, , via interaction Hamiltonian:

• Where , .

• Has response function ,

• And response rate , where .
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SPACETIMES

• First consider AdS3, then BTZ

• AdS3 stems from induced metric on a 3-d hyperboloid

• Where is the AdS length 

• Embedded in 4-d flat geometry

• With coordinates
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SPACETIME – ADS3

• Transformations

• Metric

• Wightman
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SPACETIME – STATIONARY BTZ

• Transformations with:

• Metric

• Wightman
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SPACETIME – ROTATING BTZ

• Very similar to Stationary BTZ

• Metric:

• Where , , and and are the inner and outer radii,  

is the angular momentum.

• Wightman
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SPACETIME – ROTATING BTZ

• Wightman function appears to be unchanged

• But the squared distance is now

• Where 

• And 

vii



DERIVATIONS – ADS RESPONSE RATE

• For AdS, we consider the constantly accelerating trajectory

• Corresponding to a stationary detector in Rindler coordinates

• The Wightman function is then given by

• Where we substituted by the KMS 
temperature
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DERIVATIONS – ADS RESPONSE RATE

• The response rate can then be expressed as

• Where we performed the substitution

• Performing the integrals, we find that 
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DERIVATIONS – STATIONARY BTZ RESPONSE RATE

• For BTZ, we consider the stationary detector trajectory

• Where is the redshift factor

• Following a very similar approach to that employed in Ads, we find that the response rate is given by

• Where
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DERIVATIONS – ROTATING BTZ RESPONSE RATE

• For BTZ, we consider the co-rotating detector trajectory

• Where is the redshift factor

• Once more, following a similar approach to that employed in AdS, we find that the response rate to be

• Where
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DERIVATIONS – SPACETIMES

• For AdS, we consider the constantly accelerating trajectory

• Corresponding to a stationary detector in Rindler coordinates

• For Stationary BTZ, the detector trajectory is stationary:

• For Rotating BTZ, the detector trajectory is co-rotating:

• In these, and are the redshift factors in the appropriate spacetimes and 
are dependent on the radial position of the detector, 
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DERIVATIONS – FISHER INFORMATION

• Overall Hamiltonian

• von Neumann eq.

States:

• Master equation of Kossakowski-Lindblad form

Describes time-evolution of detector

State of the detector
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FI DERIVATION

• In more detail…

Kossakowski matrix 
elements depend on the 
response rate
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FI DERIVATION

• Surprisingly, admits an analytic solution

• Given the initial state , parametrized by 

• We have , where

The third Bloch vector term is 
dependent on a ratio of 
Kossakowski matrix elements
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FI DERIVATION

• Fisher information

• For 2-d system

• Where 

• Thus, , which for us will be 

• Parameters at play: and

xvi

Fisher Information

Temperature
Energy gap

AdS lengthInitial state

Boundary condition

BTZ Mass Angular 
momentum



BTZAdS

xvii

• Same 8 qualitative behaviours are present in BTZ
• All can be achieved using only the transparent 

boundary condition and M=1

• There are 8* distinct qualitative behaviours
• Behaviour 4 is the same as behaviour 3

• Curve colour indicates boundary condition
• Black = Transparent (ζ=0)
• Blue = Dirichlet (ζ=1)
• Red = Neumann (ζ=-1)



3-d AdS4-d AdS

xviii

• There are 8 distinct qualitative behaviours
• Behaviour 4 is the same as behaviour 3

• Curve colour indicates boundary condition
• Black = Transparent (ζ=0)
• Blue = Dirichlet (ζ=1)
• Red = Neumann (ζ=-1)



BTZAdS

xix

Rows have fixed Ω,T Columns have fixed θ



Of note:AdS vs. BTZ

• AdS is dashed lines; BTZ is solid lines

• When Ω=T, AdS and BTZ coincide

• As shown in 1st and 4th row

• When Ω ≠ T, discrepancy between AdS and BTZ

• ‘Hot’ when Ω=0.1 < T=1 

• Dirichlet actually coincides here

• ‘Cold’ when Ω=1 > T=0.1 

• Qualitatively distinct behaviours present 
for all boundary conditions

• BTZ mass is fixed at M=1 here

• What if we vary the mass…
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Of note:BTZ for Ω=T =0.1

• Different masses are represented by different 
colours

• Increasing mass from M=0.01 to M=1.5 
corresponds to moving along the rainbow 
spectrum (ROYGBV)

• Here we have Ω=T -> likely more simple

• No (significant) change in qualitative 
behaviour

• Increasing M seems to shift curve right

• Slight amplification at times

• between 0.1 and 0.5 (yellow-> green)
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Of note:BTZ for Ω > T  ‘Cold’

• Different masses are represented by different 
colours

• Increasing mass from M=0.01 to M=1.5 
corresponds to moving along the rainbow 
spectrum (ROYGBV)

• No clear trend in Fisher information alongside the 
changing mass

• Most drastic behaviour appears again between 
0.1 and 0.5 (yellow-> green)
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Of note:BTZ for Ω > T  ‘Cold’

• Different masses are represented by different 
colours

• Increasing mass from M=0.01 to M=1.5 
corresponds to moving along the rainbow 
spectrum (ROYGBV)

• No clear trend in Fisher information alongside the 
changing mass

• Most drastic behaviour appears again between 
0.1 and 0.5 (yellow-> green)

• ZOOMED
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• Oscillatory behaviour can be seen in the ‘wave’ pattern

• For larger Ω, we see even greater amplitudes and more oscillations 

• Note the change in scale

xxiv

Fixed time, varying mass - Density Plots
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BONUS CONTENT – WHAT IS THE DEFN OF QFI

• In essence QFI is the maximal FI obtained over all possible measurements



BONUS CONTENT – BOUNDARY CONDITIONS

• Dirichlet

• The field vanishes at the boundary

• Neumann

• The field’s normal derivative vanishes at the boundary

• Transparent 

• This is described in detail in a 1978 PRD paper by Avis, Isham, and Storey.

• It is a little peculiar in its definition, but it enables conservation of energy, angular momentum, etc.



BTZ; ell=10 , Omega=T=0.1BTZ; ell=1 , Omega=T=0.1



BTZ; ‘hot’, varying MBTZ; ‘cold’, varying M


