QUANTUM STATE ENGINEERING Using Collective Spin Excitations

Andrew MacRae, University of Victoria June 20, 2023

EXPERIMENTAL QUANTUM OPTICS

Quantum state tomography

Basic Definitions

Basic Definitions

• Hamiltonian of single mode of electromagnetic field:

$$\hat{H} = \hbar\omega \left(\hat{a}^{\dagger}\hat{a} + \frac{1}{2}\right) = \hbar\omega \left(\hat{n} + \frac{1}{2}\right)$$

$$\hat{a} = \frac{\hat{q} + i\hat{p}}{\sqrt{2}} \qquad \hat{a}^{\dagger} = \frac{\hat{q} - i\hat{p}}{\sqrt{2}}$$

Basic Definitions

• Hamiltonian of single mode of electromagnetic field:

$$\hat{H} = \hbar\omega \left(\hat{a}^{\dagger}\hat{a} + \frac{1}{2}\right) = \hbar\omega \left(\hat{n} + \frac{1}{2}\right)$$

· Identical to quantum harmonic oscillator

$$\hat{H} = \hbar\omega \left(\hat{q}^2 + \hat{p}^2\right)$$

$$\hat{a} = \frac{\hat{q} + i\hat{p}}{\sqrt{2}} \qquad \hat{a}^{\dagger} = \frac{\hat{q} - i\hat{p}}{\sqrt{2}}$$

Basic Definitions

• Hamiltonian of single mode of electromagnetic field:

$$\hat{H} = \hbar\omega \left(\hat{a}^{\dagger}\hat{a} + \frac{1}{2}\right) = \hbar\omega \left(\hat{n} + \frac{1}{2}\right)$$

· Identical to quantum harmonic oscillator

$$\hat{H} = \hbar\omega \left(\hat{q}^2 + \hat{p}^2\right)$$

• Coherent states ("classical" quantum states) $\hat{a} | \alpha \rangle = \alpha | \alpha \rangle$

$$\hat{a} = \frac{\hat{q} + i\hat{p}}{\sqrt{2}} \qquad \hat{a}^{\dagger} = \frac{\hat{q} - i\hat{p}}{\sqrt{2}}$$

Basic Definitions

• Hamiltonian of single mode of electromagnetic field:

$$\hat{H} = \hbar\omega \left(\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \right) = \hbar\omega \left(\hat{n} + \frac{1}{2} \right)$$

· Identical to quantum harmonic oscillator

$$\hat{H} = \hbar\omega \left(\hat{q}^2 + \hat{p}^2\right)$$

- Coherent states ("classical" quantum states) $\hat{a} | \alpha \rangle = \alpha | \alpha \rangle$
- Fock states (photon states) $\hat{n}|n\rangle = n|n\rangle$

$$\hat{a} = \frac{\hat{q} + i\hat{p}}{\sqrt{2}} \qquad \hat{a}^{\dagger} = \frac{\hat{q} - i\hat{p}}{\sqrt{2}}$$

Basic Definitions

• Hamiltonian of single mode of electromagnetic field:

$$\hat{H} = \hbar\omega \left(\hat{a}^{\dagger}\hat{a} + \frac{1}{2}\right) = \hbar\omega \left(\hat{n} + \frac{1}{2}\right)$$

· Identical to quantum harmonic oscillator

$$\hat{H} = \hbar\omega \left(\hat{q}^2 + \hat{p}^2\right)$$

• Coherent states ("classical" quantum states) \hat{a}

$$\hat{a} \mid \alpha \rangle = \alpha \mid \alpha \rangle$$

• Fock states (photon states) $\hat{n}|n\rangle = n|n\rangle$

$$|\psi\rangle = \sum_{n=0}^{\infty} c_n |n\rangle$$

• Describe in Fock Basis

$$\hat{a} = \frac{\hat{q} + i\hat{p}}{\sqrt{2}} \qquad \hat{a}^{\dagger} = \frac{\hat{q} - i\hat{p}}{\sqrt{2}}$$

Basic Definitions

• Hamiltonian of single mode of electromagnetic field:

$$\hat{H} = \hbar\omega \left(\hat{a}^{\dagger}\hat{a} + \frac{1}{2}\right) = \hbar\omega \left(\hat{n} + \frac{1}{2}\right)$$

· Identical to quantum harmonic oscillator

$$\hat{H} = \hbar\omega \left(\hat{q}^2 + \hat{p}^2\right)$$

• Coherent states ("classical" quantum states)

$$\hat{a} \mid \alpha \rangle = \alpha \mid \alpha \rangle$$

• Fock states (photon states) $\hat{n}|n\rangle = n|n\rangle$

$$|\psi\rangle = \sum_{n=0}^{\infty} c_n |n\rangle$$

• Describe in Fock Basis

CLASSICAL STATE TO MOGRAPHY

CLASSICAL STATE TO MOGRAPHY

Harmonic oscillator:
 phase space description

CLASSICAL STATE TO MOGRAPHY

- Harmonic oscillator:
 phase space description
- Ensemble of harmonic oscillators: phase space probability density: W(X, P)

CLASSICAL STATE TOMOGRAPHY

- Harmonic oscillator:
 phase space description
- Ensemble of harmonic oscillators: phase space probability density: W(X, P)

• Repeated measurement of X: marginal distribution pr(X)

CLASSICAL STATE TOMOGRAPHY

- Harmonic oscillator:
 phase space description
- Ensemble of harmonic oscillators: phase space probability density: W(X, P)

- Repeated measurement of X: marginal distribution pr(X)
- · Relate marginal to density:

$$pr(X) = \int_{-\infty}^{\infty} W(X, P)dP$$
 $pr(P) = \int_{-\infty}^{\infty} W(X, P)dX$

• Quantum Mechanics: $\langle \Delta X^2 \rangle \langle \Delta P^2 \rangle \geq \frac{\hbar^2}{4}$ Can't have "point in phase space"

- Quantum Mechanics: $\langle \Delta X^2 \rangle \langle \Delta P^2 \rangle \geq \frac{\hbar^2}{4}$ Can't have "point in phase space"
- We can measure pr(X), pr(P)

- Quantum Mechanics: $\langle \Delta X^2 \rangle \langle \Delta P^2 \rangle \geq \frac{\hbar^2}{4}$ Can't have "point in phase space"
- We can measure pr(X), pr(P)
- Wigner function: $W_{\rho}(X, P) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ipq} \langle X \frac{q}{2} | \hat{\rho} | X + \frac{q}{2} \rangle dq$

- Quantum Mechanics: $\langle \Delta X^2 \rangle \langle \Delta P^2 \rangle \geq \frac{\hbar^2}{4}$ Can't have "point in phase space"
- We can measure pr(X), pr(P)
- Wigner function: $W_{\rho}(X,P) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ipq} \langle X \frac{q}{2} | \hat{\rho} | X + \frac{q}{2} \rangle dq$
 - · Marginals reconstructed as before

- Quantum Mechanics: $\langle \Delta X^2 \rangle \langle \Delta P^2 \rangle \geq \frac{\hbar^2}{4}$ Can't have "point in phase space"
- We can measure pr(X), pr(P)
- Wigner function: $W_{\rho}(X, P) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ipq} \langle X \frac{q}{2} | \hat{\rho} | X + \frac{q}{2} \rangle dq$
 - Marginals reconstructed as before
 - Uniquely defines state $W_{\rho} \Leftrightarrow \hat{\rho}$

- Quantum Mechanics: $\langle \Delta X^2 \rangle \langle \Delta P^2 \rangle \geq \frac{\hbar^2}{4}$ Can't have "point in phase space"
- We can measure pr(X), pr(P)
- Wigner function: $W_{\rho}(X, P) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ipq} \langle X \frac{q}{2} | \hat{\rho} | X + \frac{q}{2} \rangle dq$
 - · Marginals reconstructed as before
 - Uniquely defines state $W_{\rho} \Leftrightarrow \hat{\rho}$
 - · Not a probability can be negative!

Thermal State

Incoherent mixture of photons

$$\hat{\rho} = \sum_{n} \gamma^{n} |n\rangle\langle n|$$

Coherent State

- Coherent mixture of photons
- Canonical classical state

$$|\alpha\rangle = e^{-\frac{1}{2}|\alpha|^2} \sum_{n} \frac{\alpha^2}{\sqrt{n!}} |n\rangle$$

- Highly nonclassical $(\langle X \rangle = \langle P \rangle = 0)$
- Negative Wigner Function
- $\hat{\rho} = |1\rangle\langle 1|$

Schrödinger cat state

Superposition of two coherent states

$$\hat{\psi} = \frac{|\alpha\rangle + |-\alpha\rangle}{\sqrt{2}}$$

GOAL: FULL OPTICAL QUANTUM STATE

KEYTOOL: W(X,P)OPTICAL HOMODYNETOMOGRAPHY signal local oscillator homodyne piezo detector

• How to obtain W(X, P) (or $\hat{\rho}$)

- How to obtain W(X, P) (or $\hat{\rho}$)
- Strategy: measure marginals and reconstruct (c.f. medical tomography)

- How to obtain W(X, P) (or $\hat{\rho}$)
- Strategy: measure marginals and reconstruct (c.f. medical tomography)
- How to measure \hat{X} ?

 Optical homodyne detection $i(t) \propto X(t)$

- How to obtain W(X, P) (or $\hat{\rho}$)
- Strategy: measure marginals and reconstruct (c.f. medical tomography)
- How to measure \hat{X} ? Optical homodyne detection $i(t) \propto X(t)$
- · Reconstruct a complex temporal mode via:

$$X_{\psi} = \int \psi(t)i(t)dt$$

ATOMIC SOURCE OF NONCLASSICAL LIGHT

Four Wave Mixing in Rb Vapour

4WM SOURCE

4VMSOURCE

• Strong pump creates correlated stokes and anti-stokes fields

4WM SOURCE

- Strong pump creates correlated stokes and anti-stokes fields
- Third order nonlinear process

• Energy:
$$2\omega_p = \omega_s + \omega_i$$

• Momentum: $2\vec{k}_p = \vec{k}_s + \vec{k}_i$

4WM SOURCE

- Strong pump creates correlated stokes and anti-stokes fields
- Third order nonlinear process

• Energy:
$$2\omega_p = \omega_s + \omega_i$$

• Momentum: $2\vec{k}_p = \vec{k}_s + \vec{k}_i$

4VMSOURCE

Narrowband Single Photons

• Condition on Stokes photon detection: $\langle 1|_{s} (c_{0}|0\rangle_{s}|0\rangle_{a} + c_{1}|1\rangle_{s}|1\rangle_{a} + c_{2}|2\rangle_{s}|2\rangle_{a} + ...) \rightarrow |1\rangle_{a}$

 Heralded single photon!

4VMSOURCE

Narrowband Single Photons

• Condition on Stokes photon detection: $\langle 1|_{s} (c_{0}|0\rangle_{s}|0\rangle_{a} + c_{1}|1\rangle_{s}|1\rangle_{a} + c_{2}|2\rangle_{s}|2\rangle_{a} + ...) \rightarrow |1\rangle_{a}$

 Heralded single photon!

"click"

MacRae et al PRL (2012)

Temporal Wavefunction

Temporal Wavefunction

· Narrowband single photon:

 $\Delta\omega \approx 2\pi \times 10$ MHz

4VMSOURCE

Temporal Wavefunction

· Narrowband single photon:

$$\Delta\omega \approx 2\pi \times 10$$
MHz

. $\Delta t \approx \frac{1}{\Delta \omega}$ Temporal resolution of wavefunction

Temporal Wavefunction

· Narrowband single photon:

$$\Delta\omega \approx 2\pi \times 10$$
MHz

- . $\Delta t \approx \frac{1}{\Delta \omega}$ Temporal resolution of wavefunction
- Autocorrelation of homodyne current: temporal mode $\psi(t)$ of photon:

$$|1\rangle_{\psi} = \int \psi(t) |1\rangle dt$$

4VMSOURCE

Temporal Wavefunction

· Narrowband single photon:

$$\Delta\omega \approx 2\pi \times 10$$
MHz

- . $\Delta t \approx \frac{1}{\Delta \omega}$ Temporal resolution of wavefunction
- Autocorrelation of homodyne current: temporal mode $\psi(t)$ of photon:

$$|1\rangle_{\psi} = |\psi(t)|1_{t}\rangle dt$$

Temporal Wavefunction

· Narrowband single photon:

$$\Delta\omega \approx 2\pi \times 10$$
MHz

. $\Delta t \approx \frac{1}{\Delta \omega}$ Temporal resolution of wavefunction

• Autocorrelation of homodyne current: temporal mode $\psi(t)$ of photon:

$$|1\rangle_{\psi} = |\psi(t)|1_{t}\rangle dt$$

Toward full quantum state engineering

Toward full quantum state engineering

Seed process with weak coherent state:

$$|\alpha\rangle \approx |0\rangle_s + \alpha |1\rangle_s$$

$$|\Psi\rangle = |0_s 0_a\rangle + \alpha |1_s 1_a\rangle - i\gamma/\hbar |1_s 0_a\rangle$$

Toward full quantum state engineering

Seed process with weak coherent state:

$$|\alpha\rangle \approx |0\rangle_s + \alpha |1\rangle_s$$

$$|\Psi\rangle = |0_s 0_a\rangle + \alpha |1_s 1_a\rangle - i\gamma/\hbar |1_s 0_a\rangle$$

· Condition on signal channel photon:

$$\langle 1_s | \Psi \rangle = \alpha | 0 \rangle - \frac{\eta}{\hbar} | 1 \rangle$$

Brannan et al. Opt Lett (2014)

Toward full quantum state engineering

Seed process with weak coherent state:

$$|\alpha\rangle \approx |0\rangle_s + \alpha |1\rangle_s$$

$$|\Psi\rangle = |0_s 0_a\rangle + \alpha |1_s 1_a\rangle - i\gamma/\hbar |1_s 0_a\rangle$$

· Condition on signal channel photon:

$$\langle 1_s | \Psi \rangle = \alpha | 0 \rangle - \frac{i\gamma}{\hbar} | 1 \rangle$$

• α and γ experimentally accessible

Brannan et al. Opt Lett (2014)

4VMSOURCE

Can this be extended?

Can this be extended?

• YES! Use multiple photon subtraction

4VM SOURCE

Can this be extended?

• YES! Use multiple photon subtraction

• Each box is a low-reflectivity beam splitter with coherent state at input:

Can this be extended?

• YES! Use multiple photon subtraction

Condition at |0⟩ at output:

$$|\psi\rangle = \langle 0|\prod_{n=0}^{N} (\alpha_n + r_n \hat{a}_n) \hat{H}_{4WM} |0_s 0_a\rangle$$

 $= \alpha_k + r_k \hat{a}$

Can this be extended?

• YES! Use multiple photon subtraction

Condition at |0⟩ at output:

$$|\psi\rangle = \langle 0|\prod_{n=0}^{N} (\alpha_n + r_n \hat{a}_n) \hat{H}_{4WM} |0_s 0_a\rangle$$
$$= \langle 0_s|\sum_{n=0}^{N} b_n \hat{a}_i^n |n_a n_s\rangle = \sum_{n=0}^{N} c_n |n_a\rangle$$

ENGINEERING THE ATOMIC STATE

Collective Spin Excitations

ENGINEERING THE ATOMIC STATE

Collective Spin Excitations

$$|c\rangle$$

$$|0\rangle_{cse}$$

• Lambda system: all atoms in state $|b\rangle$

$$\begin{array}{c|c} 000000-|b\rangle \\ \hline 0\rangle_{cso} \end{array}$$

- Lambda system: all atoms in state $|b\rangle$
- Pump scatters single photon $|b\rangle \rightarrow |c\rangle$

- Lambda system: all atoms in state $|b\rangle$
- Pump scatters single photon $|b\rangle \rightarrow |c\rangle$
- Indistinguishability: $|1\rangle_{cse} = e^{ikr_1}|cb...b\rangle + e^{ikr_2}|bc...b\rangle + ... + e^{ikr_N}|bb...c\rangle$

- Lambda system: all atoms in state $|b\rangle$
- Pump scatters single photon $|b\rangle \rightarrow |c\rangle$
- Indistinguishability: $|1\rangle_{cse} = e^{ikr_1}|cb...b\rangle + e^{ikr_2}|bc...b\rangle + ... + e^{ikr_N}|bb...c\rangle$
- Hamiltonian $\hat{H} = \gamma \left[\hat{S}_{cse} \hat{a} + \hat{S}_{cse}^{\dagger} \hat{a}^{\dagger} \right]$

- Lambda system: all atoms in state $|b\rangle$
- Pump scatters single photon $|b\rangle \rightarrow |c\rangle$
- Indistinguishability: $|1\rangle_{cse} = e^{ikr_1}|cb...b\rangle + e^{ikr_2}|bc...b\rangle + ... + e^{ikr_N}|bb...c\rangle$
- Hamiltonian $\hat{H} = \gamma \left[\hat{S}_{cse} \hat{a} + \hat{S}_{cse}^{\dagger} \hat{a}^{\dagger} \right]$
 - Same as optical 4VVM case!

- Lambda system: all atoms in state $|b\rangle$
- Pump scatters single photon $|b\rangle \rightarrow |c\rangle$
- Indistinguishability: $|1\rangle_{cse} = e^{ikr_1}|cb...b\rangle + e^{ikr_2}|bc...b\rangle + ... + e^{ikr_N}|bb...c\rangle$
- Hamiltonian $\hat{H} = \gamma \left[\hat{S}_{cse} \hat{a} + \hat{S}_{cse}^{\dagger} \hat{a}^{\dagger} \right]$
 - Same as optical 4VVM case!
- Collective interference: efficient readout

- Lambda system: all atoms in state $|b\rangle$
- Pump scatters single photon $|b\rangle \rightarrow |c\rangle$
- Indistinguishability: $|1\rangle_{cse} = e^{ikr_1}|cb...b\rangle + e^{ikr_2}|bc...b\rangle + ... + e^{ikr_N}|bb...c\rangle$
- Hamiltonian $\hat{H} = \gamma \left[\hat{S}_{cse} \hat{a} + \hat{S}_{cse}^{\dagger} \hat{a}^{\dagger} \right]$
 - Same as optical 4VVM case!
- Collective interference: efficient readout

- $|a\rangle$

- Lambda system: all atoms in state $|b\rangle$
- Pump scatters single photon $|b\rangle \rightarrow |c\rangle$
- Indistinguishability: $|1\rangle_{cse} = e^{ikr_1}|cb...b\rangle + e^{ikr_2}|bc...b\rangle + ... + e^{ikr_N}|bb...c\rangle$
- $\begin{array}{c|c} \mathbf{00000-0-}|b\rangle \\ \hline & 1\rangle_{cc} \end{array}$

- Hamiltonian $\hat{H} = \gamma \left[\hat{S}_{cse} \hat{a} + \hat{S}_{cse}^{\dagger} \hat{a}^{\dagger} \right]$
 - Same as optical 4VVM case!
- Collective interference: efficient readout $\sum_{n=0}^{N} e^{i(\vec{k}_s \vec{k}_a) \cdot \vec{r}_n} \approx \delta \left(\vec{k}_s \vec{k}_a\right)$

- $|a\rangle$

- Lambda system: all atoms in state $|b\rangle$
- Pump scatters single photon $|b\rangle \rightarrow |c\rangle$
- Indistinguishability: $|1\rangle_{cse} = e^{ikr_1}|cb...b\rangle + e^{ikr_2}|bc...b\rangle + ... + e^{ikr_N}|bb...c\rangle$
- Hamiltonian $\hat{H} = \gamma \left[\hat{S}_{cse} \hat{a} + \hat{S}_{cse}^{\dagger} \hat{a}^{\dagger} \right]$
 - Same as optical 4VVM case!
- Collective interference: efficient readout $\sum_{n=0}^{N} e^{i(\vec{k}_s \vec{k}_a) \cdot \vec{r}_n} \approx \delta \left(\vec{k}_s \vec{k}_a\right)$

$$|c\rangle$$

COLLECTIVE SPIN EXCITATIONS

· Perform partial photon subtraction of stokes (idler) channel: CSE engineering

COLLECTIVE SPIN EXCITATIONS

· Perform partial photon subtraction of stokes (idler) channel: CSE engineering

Read out CSE state into optical Hilbert space