Quantum resources in the future of quantum information

Carlo Maria Scandolo

Department of Mathematics & Statistics, University of Calgary

Institute for Quantum Science and Technology, University of Calgary

CAP Congress 2023

Quantum does it better!

• Quantum objects give an advantage over classical ones.

Quantum does it better!

- Quantum objects give an advantage over classical ones.
- Unifying theme in quantum information: quantum is a resource.

Quantum does it better!

- Quantum objects give an advantage over classical ones.
- Unifying theme in quantum information: quantum is a resource.

We want to quantify the resourcefulness.

Something becomes a resource when there's some limitation.

Something becomes a resource when there's some limitation.

Oil as a resource

Oil is a resource because e.g. cars need fuel.

Something becomes a resource when there's some limitation.

Oil as a resource

Oil is a resource because e.g. cars need fuel. It becomes more valuable if there isn't much of it.

• Everything starts with a restriction on the allowed operations (e.g. channels)...

- Everything starts with a restriction on the allowed operations (e.g. channels)...
- Only a subset of operations can be performed (free operations), dictated by the physical setting:

- Everything starts with a restriction on the allowed operations (e.g. channels)...
- Only a subset of operations can be performed (free operations), dictated by the physical setting:
 - the identity channel is free;

- Everything starts with a restriction on the allowed operations (e.g. channels)...
- Only a subset of operations can be performed (free operations), dictated by the physical setting:
 - the identity channel is free;
 - the composition of free operations is free;

- Everything starts with a restriction on the allowed operations (e.g. channels)...
- Only a subset of operations can be performed (free operations), dictated by the physical setting:
 - the identity channel is free;
 - the composition of free operations is free;
 - the tensor product of free operations is free.

- Everything starts with a restriction on the allowed operations (e.g. channels)...
- Only a subset of operations can be performed (free operations), dictated by the physical setting:
 - the identity channel is free;
 - the composition of free operations is free;
 - the tensor product of free operations is free.

Common mathematical framework given by category theory [Coecke et al.].

Static resource theories [Chitambar & Gour]

The resources into play are states.

Static resource theories [Chitambar & Gour]

The resources into play are states.

They're useful when we're interested in tasks with states.

Static resource theories [Chitambar & Gour]

The resources into play are states.

They're useful when we're interested in tasks with states.

Dynamical resource theories

[Liu & Yuan, Liu & Winter, Gour & CMS '21]

The resources into play are processes.

Static resource theories [Chitambar & Gour]

The resources into play are states.

They're useful when we're interested in tasks with states.

Dynamical resource theories

[Liu & Yuan, Liu & Winter, Gour & CMS '21]

The resources into play are processes.

They're useful in communication scenarios.

Static resource theories [Chitambar & Gour]

The resources into play are states.

They're useful when we're interested in tasks with states.

Dynamical resource theories

[Liu & Yuan, Liu & Winter, Gour & CMS '21]

The resources into play are processes.

They're useful in communication scenarios.

Main question

Can A be converted into B with free operations?

Static resource theories

- Static resource theories
 - entanglement theory [Horodecki et al.];

- Static resource theories
 - entanglement theory [Horodecki et al.];
 - quantum thermodynamics [Lostaglio];

- Static resource theories
 - entanglement theory [Horodecki et al.];
 - quantum thermodynamics [Lostaglio];
 - quantum coherence [Streltsov et al.];

- Static resource theories
 - entanglement theory [Horodecki et al.];
 - quantum thermodynamics [Lostaglio];
 - quantum coherence [Streltsov et al.];
 - symmetry and reference frames [Bartlett et al.].

- Static resource theories
 - entanglement theory [Horodecki et al.];
 - quantum thermodynamics [Lostaglio];
 - quantum coherence [Streltsov et al.];
 - symmetry and reference frames [Bartlett et al.].
- Dynamical resource theories

- Static resource theories
 - entanglement theory [Horodecki et al.];
 - quantum thermodynamics [Lostaglio];
 - quantum coherence [Streltsov et al.];
 - symmetry and reference frames [Bartlett et al.].
- Dynamical resource theories
 - entanglement theory [Gour & CMS '20];

- Static resource theories
 - entanglement theory [Horodecki et al.];
 - quantum thermodynamics [Lostaglio];
 - quantum coherence [Streltsov et al.];
 - symmetry and reference frames [Bartlett et al.].
- Dynamical resource theories
 - entanglement theory [Gour & CMS '20];
 - quantum thermodynamics [Faist et al.];

- Static resource theories
 - entanglement theory [Horodecki et al.];
 - quantum thermodynamics [Lostaglio];
 - quantum coherence [Streltsov et al.];
 - symmetry and reference frames [Bartlett et al.].
- Dynamical resource theories
 - entanglement theory [Gour & CMS '20];
 - quantum thermodynamics [Faist et al.];
 - quantum coherence [Saxena et al.].

Pure-state entanglement

- Pure-state entanglement
 - \bullet convert a pure bipartite state $|\psi\rangle_{AB}$ into $|\phi\rangle_{AB}$

- Pure-state entanglement
 - convert a pure bipartite state $|\psi\rangle_{AB}$ into $|\phi\rangle_{AB}$
 - use only local operations and classical communication (LOCC)

- Pure-state entanglement
 - convert a pure bipartite state $|\psi\rangle_{AB}$ into $|\phi\rangle_{AB}$
 - use only local operations and classical communication (LOCC)
- Non-uniformity

- Pure-state entanglement
 - convert a pure bipartite state $|\psi\rangle_{AB}$ into $|\phi\rangle_{AB}$
 - use only local operations and classical communication (LOCC)
- Non-uniformity
 - convert a state ρ_A into a state σ_A

- Pure-state entanglement
 - convert a pure bipartite state $|\psi\rangle_{AB}$ into $|\phi\rangle_{AB}$
 - use only local operations and classical communication (LOCC)
- Non-uniformity
 - convert a state ρ_A into a state σ_A
 - use only random unitary channels (RU)

- Pure-state entanglement
 - convert a pure bipartite state $|\psi\rangle_{AB}$ into $|\phi\rangle_{AB}$
 - use only local operations and classical communication (LOCC)
- Non-uniformity
 - convert a state ρ_A into a state σ_A
 - use only random unitary channels (RU)
 - relevant to thermodynamics of isolated systems

- Pure-state entanglement
 - convert a pure bipartite state $|\psi\rangle_{AB}$ into $|\phi\rangle_{AB}$
 - use only local operations and classical communication (LOCC)
- Non-uniformity
 - convert a state ρ_A into a state σ_A
 - use only random unitary channels (RU)
 - relevant to thermodynamics of isolated systems

Nielsen's theorem [Nielsen]

$$|\psi\rangle_{AB} \stackrel{\text{LOCC}}{\mapsto} |\phi\rangle_{AB}$$
 if and only if $\operatorname{tr}_{B} |\psi\rangle \langle\psi| \stackrel{\text{RU}}{\mapsto} \operatorname{tr}_{B} |\phi\rangle \langle\phi|$.

Future directions

Develop more dynamical resource theories.

Future directions

- Develop more dynamical resource theories.
- Find ways to link different resource theories (functors).

Future directions

- Develop more dynamical resource theories.
- Find ways to link different resource theories (functors).
- Export the machinery of resource theories beyond quantum information (category theory) [CMS et al.].

References

- S D Bartlett, T Rudolph, R W Spekkens, Rev. Mod. Phys. 79 (2), 555 (2007).
- G Chiribella, CMS, New J. Phys. 17 (10), 103027 (2015).
- E Chitambar, G Gour, Rev. Mod. Phys. 91 (2), 025001 (2019).
- B Coecke, T Fritz, R W Spekkens, Inf. Comput. 250, 59-86 (2016).
- P Faist, M Berta, F G S L Brandão, Phys. Rev. Lett. 122 (20), 200601 (2019).
- G Gour, CMS, Phys. Rev. Lett. 125 (18), 180505 (2020).
- G Gour, CMS, arXiv:2101.01552 [quant-ph] (2021).
- R Horodecki et al., Rev. Mod. Phys. 81 (2), 865 (2009).
- Y Liu, X Yuan, Phys. Rev. Research 2 (1), 012035 (2020).
- Z-W Liu, A Winter, arXiv:1904.04201 [quant-ph] (2019).
- M Lostaglio, Rep. Prog. Phys. 82 (11), 114001 (2019).
- M A Nielsen, Phys. Rev. Lett. 83 (2), 436 (1999).
- G Saxena, E Chitambar, G Gour, Phys. Rev. Research 2 (2), 023298 (2020).
- GMS, G Gour, B C Sanders, Phys. Rev. E 107 (1), 014203 (2023).
- A Streltsov, G Adesso, M B Plenio, Rev. Mod. Phys. 89 (4), 041003 (2017).

