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What is quantum computing?

Classical computing:
e Move electrons around
e Copy objects around
e Python, Java, C++, Fortan

Quantum Computing
e Special rules
e Can we get something?

https://en.wikipedia.org/wiki/Disaccharide
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Old debate: Noise

Classical error correction
e Makes cellphone calls better

Quantum error correction
e Implementation of logical qubits
e Only early implementations
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P. W. Shor, PRA 52, R2493 (1995)
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Toric codes

Holographic codes




Quantum algorithms

L. K. Grover, “Quantum Mechanics Helps in Searching for a

Grover,s SearCh algorithm Needle in a Haystack,” Phys. Rev. Lett. 79, 325 (1997)
e Classical analogy with coupled oscillators

L. K. Grover, “From Schrodinger’s equation to the quantum
search algorithm,” Pramana 56,333 (2001)
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e Classical: O(/V); Quantum: O(\/N)
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Quantum algorithms run faster, but...

Tomography
e Copenhagen interpretation of measurement
e Many operations to measure
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Some other algorithms
Shor's algorithm

Shor’s algorithm

e Breaks encryption @ ‘@ —/f=
e Prime factorization of an integer | _@ ORI E
0
Deutsch-Josza algorithm o) 2] —A

) —=—vHo - v —

e Good mathematical example

https://en.wikipedia.org/wiki/File:Shor's_algorithm.svg

Broad categories
e Quantum machine learning
e Quantum chemistry
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Quantum chemistry

The Trotter Step Size Required for Accurate Quantum Simulation of Quantum
Chemistry
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e—iHAt — e—iHAAte—iHBAt + O(Atz)

The simulation of molecules is a widely anticipated application of quantum computers. However,
recent studies have cast a shadow on this hope by revealing that the complexity in gate count
of such simulations increases with the number of spin orbitals N as N®, which becomes prohibitive
even for molecules of modest size N ~ 100. This study was partly based on a scaling analysis of the
Trotter step required for an ensemble of random artificial molecules. Here, we revisit this analysis and
find instead that the scaling is closer to N in worst case for real model molecules we have studied,
indicating that the random ensemble fails to accurately capture the statistical properties of real-
world molecules. Actual scaling may be significantly better than this due to averaging effects. We
then present an alternative simulation scheme and show that it can sometimes outperform existing
schemes, but that this possibility depends crucially on the details of the simulated molecule. We
obtain further improvements using a version of the coalescing scheme of [1]; this scheme is based
on using different Trotter steps for different terms. The method we use to bound the complexity
of simulating a given molecule is efficient, in contrast to the approach of which relied on
exponentially costly classical exact simulation.

O(Nz) But a large prefactor!

I. INTRODUCTION from the Hamiltonian. Repeating 1/A; times yields the
time-evolution operator for a unit time. We can deduce
two immediate consequences of this approach. On the

It has been 30 years since Feynman suggested that a
J Y g8 one hand, the number of gates N, required to implement

quantum information processor could in principle sim-

»
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20v1l [quant-ph] 19 Jun 2014

ulate the dynamics of quantum systems efficiently [3],
and this idea has since been formalized and studied in
great detail [4-10]. Based on this knowledge, it has been

advocated that one of the first practical applications of
Susnininfornaiion processansauill be the shaplasion

a single infinitesimal time step will scale at least propor-
tionally to the number of terms m in the Hamiltonian.
On the other hand, the error in the TS approximation
also increases as some power of m, forcing us to adopt
a smaller time step A;, and hence a slower simulation




Quantum machine learning

lant-ph/0007036v1 12 Jul 2000

Quantum versus Classical Learnability
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Abstract

This paper studies fundamental questions in computational learning theory from a quantum
computation perspective. We consider quantum versions of two well-studied classical learning
models: Angluin’s model of exact learning from membership queries and Valiant’s Probably
Approximately Correct (PAC) model of learning from random examples. We give positive and
negative results for quantum versus classical learnability. For each of the two learning models
described above, we show that any concept class is information-theoretically learnable from
polynomially many quantum examples if and only if it is information-theoretically learnable
from polynomially many classical examples. In contrast to this information-theoretic equivalence
betwen quantum and classical learnability, though, we observe that a separation does exist
between efficient quantum and classical learnability. For both the model of exact learning
from membership queries and the PAC model, we show that under a widely held computational
hardness assumption for classical computation (the intractability of factoring), there is a concept
class which is polynomial-time learnable in the quantum version but not in the classical version
of the model.




Quantum machine learning: HHL algorithm

A quantum-inspired classical algorithm for
recommendation systems

Ewin Tang

May 10, 2019

Abstract

We give a classical analogue to Kerenidis and Prakash’s quantum recommendation
system, previously believed to be one of the strongest candidates for provably expo-
nential speedups in quantum machine learning. Our main result is an algorithm that,
given an m X n matrix in a data structure supporting certain #?-norm sampling op-
erations, outputs an ¢£2-norm sample from a rank-k approximation of that matrix in
time O(poly (k) log(mn)), only polynomially slower than the quantum algorithm. As a
consequence, Kerenidis and Prakash’s algorithm does not in fact give an exponential
speedup over classical algorithms. Further, under strong input assumptions, the clas-
sical recommendation system resulting from our algorithm produces recommendations
exponentially faster than previous classical systems, which run in time linear in m and

271v3 [cs.IR] 9 May 2019




Quantum machine learning: Shadow Tomography

Shadow Tomography of Quantum States™

Scott Aaronson
University of Texas
Austin, TX, USA
aaronson@cs.utexas.edu

ABSTRACT

We introduce the problem of shadow tomography: given an un-
known quantum mixed state p of dimension D, as well as known
two-outcome measurements Ej, .. ., Ep, estimate the probability
that E; accepts p, to within additive error ¢, for each of the M mea-
surements. How many copies of p are needed to achieve this, with
high probability? Surprisingly, we give a procedure that solves the
problem by measuring only o (8_5 -log* M - log D) copies. This
means, for example, that we can learn the behavior of an arbi-
trary n-qubit state, on all accepting/rejecting circuits of some fixed
polynomial size, by measuring only nOW copies of the state. This
resolves an open problem of the author, which arose from his work
on private-key quantum money schemes, but which also has ap-
plications to quantum copy-protected software, quantum advice,
and quantum one-way communication. Recently, building on this
work, Brandio et al. have given a different approach to shadow
tomography using semidefinite programming, which achieves a

cleverness will ever let us recover a classical description of p, even
approximately, by measuring p. Of course, the destructive nature of
measurement is what opens up many of the cryptographic possibil-
ities of quantum information, including quantum key distribution
and quantum money.

In general, the task of recovering a description of a D-dimensional
quantum mixed state p, given many copies of p, is called quantum
state tomography. This task can be shown for information-theoretic
reasons to require Q (D?) copies of p, while a recent breakthrough
of O’Donnell and Wright [24] and Haah et al. [17] showed that
O (D?) copies also suffice." Unfortunately, this number can be as-
tronomically infeasible: recall that, if p is a state of n entangled
qubits, then D = 2. No wonder that the world record, for full?
quantum state tomography, is 10-qubit states, for which millions of
measurements were needed [25].

Besides the practical issue, this state of affairs could be viewed
as an epistemic problem for quantum mechanics itself. If learning
a full description of an n-qubit state p requires measuring exp (n)




Quantum machine learning: A way out

PHYSICAL REVIEW LETTERS 126, 190505 (2021)

Editors' Suggestion

Information-Theoretic Bounds on Quantum Advantage in Machine Learning
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We study the performance of classical and quantum machine learning (ML) models in predicting
outcomes of physical experiments. The experiments depend on an input parameter x and involve execution
of a (possibly unknown) quantum process £. Our figure of merit is the number of runs of £ required to
achieve a desired prediction performance. We consider classical ML models that perform a measurement
and record the classical outcome after each run of £, and quantum ML models that can access £ coherently
to acquire quantum data; the classical or quantum data are then used to predict the outcomes of future
experiments. We prove that for any input distribution D(x), a classical ML model can provide accurate
predictions on average by accessing £ a number of times comparable to the optimal quantum ML model. In
contrast, for achieving an accurate prediction on all inputs, we prove that the exponential quantum
advantage is possible. For example, to predict the expectations of all Pauli observables in an n-qubit system
p, classical ML models require 2%") copies of p, but we present a quantum ML model using only O(n)
copies. Our results clarify where the quantum advantage is possible and highlight the potential for classical
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Another recent success: Qubitization

Hamiltonian Simulation by Qubitization

Guang Hao Low! and Isaac L. Chuang? H | W> — E | '7”)
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July 12, 2019

We present the problem of approximating the time-evolution operator e —iflt ¢ €rTOT €, A | W) — a | W) I ﬂ | w >

where the Hamiltonian H = ((G|®Z)U(|G)®12) is the projection of a unitary oracle U onto
the state |G) created by another unitary oracle. Our algorithm solves this with a query
complexity O(t + log(1/ e)) to both oracles that is optimal with respect to all parameters
in both the asymptotic and non-asymptotic regime, and also with low overhead, using at
most two additional ancilla qubits. This approach to Hamiltonian simulation subsumes
important prior art considering Hamiltonians which are d-sparse or a linear combination
of unitaries, leading to significant improvements in space and gate complexity, such as a
quadratic speed-up for precision simulations. It also motivates useful new instances, such
as where H is a density matrix. A key technical result is ‘qubitization’, which uses the
controlled version of these oracles to embed any H in an invariant SU(2) subspace. A large
class of operator functions of H can then be computed with optimal query complexity, of
which e~*#* is a special case.

Contents
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Conclusion

e Quantum algorithms can be good
o New perspective on algorithm development
o Some algorithms have fallen...

e Quantum machine learning
o How to learn data faster

e Some hope going forward
o Qubitization
o Shadow tomography

e Quantum chemistry
o Some efficient algorithms, but they require error correction
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