## Challenges for multi-messenger astronomy with gravitational waves







Dr. Jess McIver for the LVK
CAP Congress
June 20, 2023
LIGO DCC G2301191



#### Independent measurement of Hubble constant

Insight into the nature of highly dense matter See Phil Landry's talk this afternoon!

Tests of general relativity in extreme spacetime curvature

Census of stellar remnants

## Gravitational wave strain

Induced spacetime strain h(t)

$$h_{ij}(t) \propto \frac{G}{c^4 r} \frac{d^2 I_{ij}}{dt^2}$$





Measured spacetime strain h(t)



Movie: Carl Rodriguez

## Current GW detector network (IGWN)



## Searching for signals with matched filtering





B. P. Abbott et al. Phys. Rev. Lett. (2016)

S. Caudill

## Typical GW sky localizations (examples from GWTC-2)



## Prospects for early warning alerts for binary neutron stars



IGWN Public Alerts User Guide

## Prospects for early warning alerts for binary neutron stars

| Final SNR                    | 11                    | 18                    | 25                     |  |
|------------------------------|-----------------------|-----------------------|------------------------|--|
| Distance                     | 250 Mpc               | 210 Mpc               | 160 Mpc                |  |
| Sky<br>map (animated<br>GIF) |                       | 110 A 117 L 127 357   |                        |  |
| 29 Hz                        | Not detected          | Not detected          | 12000 deg <sup>2</sup> |  |
| 32 Hz                        |                       |                       | 10000 deg <sup>2</sup> |  |
| 38 Hz                        |                       | 9200 deg <sup>2</sup> | 8200 deg <sup>2</sup>  |  |
| 49 Hz                        | 2300 deg <sup>2</sup> | 1000 deg <sup>2</sup> | 730 deg <sup>2</sup>   |  |
| 56 Hz                        | 1000 deg <sup>2</sup> | 700 deg <sup>2</sup>  | 250 deg <sup>2</sup>   |  |
| 1024 Hz                      | 10 deg <sup>2</sup>   | 31 deg <sup>2</sup>   | 5.4 deg <sup>2</sup>   |  |

IGWN Public Alerts User Guide

## Inference of source properties

$$d = h + n$$
.  $\blacksquare$  Data model d = signal (through lens of detector network) h + detector noise n

$$p(\mathbf{d}|H_N, S_n(f)) = \exp \sum_i \left[ -\frac{2|\tilde{d}_i|^2}{TS_n(f_i)} - \frac{1}{2}\log(\pi TS_n(f_i)/2) \right]$$



Likelihood: we expect the residual of d-h to be consistent with Gaussian noise





#### Known compact object masses vs. estimated distance



#### Independent measurement of Hubble constant

Insight into the nature of highly dense matter See Phil Landry's talk this afternoon!

Tests of general relativity in extreme spacetime curvature

Census of stellar remnants



## Advanced LIGO noise



Interferometric GW detectors are extremely complex.

X-arm cavity

\_ 4km -

Input test mass X End test

mass X

End test

mass Y

Output port

Input laser

Recycling

J. Kissel, Apr 7 2011



## Challenge: known causes of GW detector glitches

| Lightning    | Birds       | Refrigerators    | Radio contamination |
|--------------|-------------|------------------|---------------------|
| Ocean waves  | Earthquakes | Air conditioners | Telephones          |
| Low humidity | Trains      | Snow plows       | Thunder             |
| Forklifts    | Helicopters | Airplanes        | Logging             |

## Challenge: GW detector transient noise



The <u>LIGO summary pages</u>

## Challenge: GW detector transient noise



The LIGO summary pages

# A menagerie of GW detector glitches



Time-frequency visualizations used for training Gravity Spy M.. Zevin et al.,CQG (2017).

## Different tools for different problems

- 1. Is a candidate real (astrophysical)?
- 2. If real, is parameter estimation accurate? (Is the Gaussian noise assumption valid?)



Plots by D. Davis. Glitch modelling and subtraction using **BayesWave**: Cornish & Littenberg 2014 & 2020; Davis et al 2021.

#### What impact do glitches have on parameter estimation?

Niko Lecoeuche UBC PhD student

- Simulated GW signal injected at different points in time relative to detector glitch
- GW source parameter estimation produced for signal at each injection merger time
- Posterior distributions compared to determine which parameters affected most, what constitutes a "safe" time separation between signal and glitch
- See also recent skymap study; Macas et al 2022.





#### Next level: simulated glitches



Simulated blips from Melissa Lopez's 2022 Phys Rev D paper.

See also J. Powell et al. 2022 arXiv 2207.00207

- Recent work using ML to generate simulated glitches will allow us to have much more control over the transient noise used in this study
- Simulated Gaussian noise plus a simulated glitch will allow us to much better understand the impact of lower SNR glitches

## The curious case of GW200129 - signs of precession?





#### Most Extreme "Wobbling Black Hole" Ev Detected – Exotic Phenomenon Predicte Einstein's Theory of Gravity

TOPICS: Astrophysics Black Hole Cardiff University Gravitational Waves

Science News

from research organizations

#### 'Wobbling black hole' most extreme example ever detected

Gravitational waves identify what could be a rare one-in-1000 event

Date: October 12, 2022

Source: Cardiff University

Summary: Researchers have identified a peculiar twisting motion in the orbits of two colliding black holes, an exotic phenomenon predicted by Einstein's theory of gravity. Their

study reports that this is the first time this effect, known as precession, has been seen in black holes, where the twisting is 10 billion times faster than in previous

observations.

Home > News

## One of the most extreme black hole collisions in the universe just proved Einstein right

By Brandon Specktor published October 12, 2022

The black hole twisted 10 billion times faster than any ever observed.





Hannam et al, Nature, 2022

## The curious case of GW20129



Plots by Derek Davis; Davis et al 2022.

## The curious case of GW200129



Payne et al. Phys Rev D. 2022

## Example of more subtle noise features: \$191213bb

 $\overline{S191213g}$  was found in low latency by matched filter search GstLAL in both LIGO Hanford and LIGO Livingston with FAR of 1.1 yr<sup>-1</sup>.



Plots by D. Davis

#### The need for automation

O4 candidates: ~100

O5 candidates: expected >600!

Higher detection rate and *longer* observing run

| H1 result: Pass | Observing |        |            |        |
|-----------------|-----------|--------|------------|--------|
| Task            | IFO       | Status | P-value    | Result |
| rayleigh        | H1        | Done   | 0.25       | Pass   |
| stationarity    | H1        | Done   | 0.984375   | Pass   |
| gspynettree     | H1        | Done   | 0.99584    | Pass   |
| glitchfind      | H1        | Done   | 0.99952813 | Pass   |
| lockcheck       | H1        | Done   | 1.0        | Pass   |

The LVK data quality report, J. Areeda, D. Davis et al.

Danger: pass candidates with glitches to downstream analyses (testing general relativity, rates and pop, etc)

# Introducing GSpyNetTree: signal-vs-glitch classifier for single detector GW data











Annduesh Liyanage

Dr. Mervyn Chan

Sofía Alvarez Seraphim Jarov Julian Ding Sarah Thiele
With Raymond Ng, UBC Data Science Institute Director

Gravity Spy's original architecture consists of a single classifier for all glitches (+ 1 GW class)



GSpyNetTree considers three classifiers, one per mass range, along with morphologically similar glitches.

#### Low mass CNN

- 1. GW (5-50 M<sub>o</sub>)
- 2. Blip
- 3. Low Frequency Blip
- 4. No Glitch
- 5. Scratchy

#### High mass CNN

- 1. GW (50-250 M<sub>o</sub>)
- 2. Blip
- 3. Low Frequency Blip
- 4. No Glitch
- 5. Koi Fish
- 6. Tomte

#### Extremely high mass CNN

- I. GW (250-350  $M_{\odot}$ )
- 2. Blip
- 3. Low Frequency Blip
- 4. No Glitch

Builds on the original GravitySpy architecture and training set: M. Zevin et al. 2017 CQG (arXiv 1611.04596)

Jarov S., et al., "A new method to distinguish gravitational-wave signals from detector glitches with Gravity Spy", (in prep). Álvarez-López et al., "GSpyNetTree: A signal-vs-glitch classifier for gravitational-wave event candidates", arXiv 2304.09977 (2023)



Álvarez-López et al., "GSpyNetTree: A signal-vs-glitch classifier for gravitational-wave event candidates", arXiv 2304.09977 (2023)

## A solution for robustness to glitches near signals: a multi-label classifier



## How well does GSpyNetTree perform?

>98% recall in all classifiers, in all classes!

The most commonly confused classes are GWs and no glitches; this is expected, and an equivalent result





Low mass classifier recall

## An example of where GSpyNetTree does well

GSpyNetTree result: DQ issue

#### (S230421bb) GSpyNetTree prediction on V1



#### **Parameters**

| Start time (UTC)       | 2023-04-21 04:07:30.104980 (1366085268.10498)                                                                                          |  |  |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| End time (UTC)         | 2023-04-21 04:07:34.104980 (1366085272.10498)                                                                                          |  |  |
| Event ID               | S230421bb                                                                                                                              |  |  |
| Window start<br>(UTC)  | 2023-04-21 04:07:30.104980 (1366085268.10498)                                                                                          |  |  |
| Window end<br>(UTC)    | 2023-04-21 04:07:34.104980 (1366085272.10498)                                                                                          |  |  |
| Channel                | V1:Hrec_hoft_16384Hz_INJ1_03Replay                                                                                                     |  |  |
| Class<br>probabilities | {'Blip': '0.00000', 'Blip_Low_Frequency': '0.00000', 'Chirp': '0.22620', 'Fast_Scattering': '0.00000', '0.000001', 'Tomte': '0.00002'} |  |  |
| Predicted labels       | Light_Scattering                                                                                                                       |  |  |
| Glitch p-value         | 0.00589                                                                                                                                |  |  |

#### Stationarity test: PASS

#### V1 Stationarity for GPS Time 136608







## Challenge: detection

#### S190518bb case study

Automatic Preliminary Notice sent ~6 minutes after the event:

False Alarm Rate: 1.004e-08 [Hz] (one per ~3 years)

Probability system contains a neutron star: 100%

Probability the system is a binary neutron star merger: 75%

Probability the candidate is a detector glitch: 24%





## Challenge: S190518bb case study

Perspective of astronomers engaged in GW alert follow-up.

Idea from CIFAR G&EU 2019: additional noise screening is needed! What can we do with information that is available via alerts?



### GWSkyNet: leveraging skymap information



Dr. Meryvn Chan

Two candidate triggers for the same "superevent" (i.e. nearby in time)



Miriam Cabero et al. ApJL, 2020

GWSkyNet results available for O4 to LVK members via GraceDB.

## Timeline of Advanced LIGO and Advanced Virgo



#### Observing run 4 (O4)

- Started May 24 with improved detector sensitivity (2 LIGO detectors)
- Target: Advanced LIGO and Advanced Virgo at improved sensitivity
- KAGRA also plans to join at a reduced sensitivity

## Pre-04 updates for Advanced LIGO



## Looking ahead

As the GW detection rate increases, automation will become more important.



O4 started on May 24!

Expectation for the third LIGO observing run (O3)

1 signal/week!

O4 expectation: up to a few signals per week

## What else might we detect with current detectors?



McIver and Shoemaker, 2021

## The UBC GW astrophysics group







Mervyn Chan
Alan Knee
Sofía Alvarez

Niko Lecoeuche
Annudesh Liyanage
Steven Hsueh

Evan Goetz, Alan Knee, Neev Shah, Kat Nell



Evan Goetz Helen Du Alan Knee



Mervyn Chan, Miriam Cabero



Alan Knee Heather Fong Neev Shah Vaibhav Garg