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Standard Model

1

• Search for new physics using (electro)weak interaction

• Describes 3 of the 4 fundamental forces; mediated 

by bosons

• Very successful theory, but still missing 
1. Baryon asymmetry

2. Gravity

3. Dark energy

4. Dark matter

• Classifies all known elementary particles

Leptoquarks[1]

Change: quarks ↔ leptons

Unification of matter

Lower mass limit ~ 1TeV

Z’ boson[1-4]

Neutral current that mixes with Z boson
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Atomic parity-violation (APV)

2

Z-boson exchange between electrons an nucleons (quarks)

HPV mixes s and p states → 𝑛𝑠 𝐻𝑃𝑉
𝑁𝑆𝐼 𝑛′𝑝 ∝ 𝑍2𝑁[5,6]

Nuclear Spin Independent Nuclear Spin Dependent 

• Dominates in heavy atoms

• Coherent over all nucleons

• Vector nucleon axial-vector 

electron interaction

• Connection to the QW
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• NSD Z-exchange; Vector electron axial-vector nucleon

• Inter-nucleus interaction; anapole moment

• Dominates in heavy atoms

• Hyperfine correction to the weak interaction
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• APV → Z2N

• Highly non-trivial to calculate 

matrix element

• Alkalis provide suitable systems 

for calculations

• Measured in Cs(Z=55)[7]

• In Fr(Z=87), APV effect is x18 

larger compared to Cs(Z=55)

𝑄𝑊
𝐴𝑃𝑉 ≈ 𝑁



Electroweak interaction
• Running of the Weinberg angle: QW → sin2θW

• APV tests at low momentum transfer

• Colored bands represents scenarios with dark Z’ bosons

4
Gwinner & Orozco, Quantum Sci. Technol. 7, (2022).



• Electron-quark coupling constants

• Combination of results from PVES and APV (black ellipse) @ 95% CL

• Red dot is SM prediction

5
D. Androi´c et al., Nature 557, 207 (2018).
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• Electron-quark coupling constants

• Combination of results from PVES and APV (black ellipse) @ 95% CL

• Red dot is SM prediction

5
D. Androi´c et al., Nature 557, 207 (2018).

Dashed circles 

represents mass reaches 

for new physics (g2=4π)

J. Erler et al., Annu. Rev. Nucl. Part. Sci. 64, 269 (2014).

Impressive sensitivity 

provides strong motivation 

for APV as searches of new 

physics beyond SM!



Current APV results

• Current best result is for Cs

• 1997 by Boulder group

• Performed interference experiment (more on this later)

• Experimental accuracy → 0.35%

• Other Cs measurements reach 12%[8] and 2.6%[9]

6
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• Other Cs measurements reach 12%[8] and 2.6%[9]

6

→ 6s(F=4)-7s(F=3)
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Average gives NSI contribution

−
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= 1.5935 56 mV/cm

Difference gives NSD contribution

Im ℇ1𝑃𝑉
𝑁𝑆𝐷

𝛽
= 0.077 11 mV/cm

1999 improved QW = -72.06(28), by measuring 

β using the 6s-7s M1 transition[10] → Progress 

made in measuring M1 in Fr!



• New result for APV in 2019, Antypas, et al., Nat. Phys. 15, 120 (2019).

• Used Ytterbium; N = 170, 172, 174, and 176 
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• New result for APV in 2019, Antypas, et al., Nat. Phys. 15, 120 (2019).

• Used Ytterbium; N = 170, 172, 174, and 176 

7

Single-isotope measurement accuracy 0.5%!

But theory not at the same level of 

accuracy → Alkalis still have the upper hand

Same interference 

experiment as Cs.

First demonstration of Weak 

charge dependence on neutron # 

in atomic system



Future APV with francium

• Heaviest of the alkalis (Z=87)

• APV ~18x larger than Cs

• Simple atomic structure → single valence electron

• Main drawback: highly radioactive 

• No abundant source on earth

• Need radioactive facility → ISAC I at TRIUMF

• Boulder group had thermal beam of 1013 Cs atoms/s → not feasible with Fr

• Solution: Use magneto-optical trap (MOT)

• Need 106-107 trapped atoms to achieve comparable signal to Cs

8



Francium trapping facility

9
Fr+ ions

Zr Neutralizer

Anti-Helmholtz 

coils

Push beam

MOT beam

α detector and 

Faraday cup

7p3/2

7s

F = 5

F = 4

F = 5

F = 4

F = 6

F = 3

λ=718 nm

211Fr
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MOT beams

Detection 

system

Power build-up cavity 

(PBC)  and field plates

506 nm light

~70 cm

Anti-Helmholtz 

coil

Atom cloud

~105-106 atoms



Electric field plates and PBC
• Indium tin oxide (ITO) transparent field plates

• Separation is 2.858 ± 0.003 cm

• PBC developed during the pandemic 

• Build-up factor of ~4000

11



Previous Measurements
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• Test atomic theory using allowed transitions

• 7s-7p1/2 isotope shift in Fr → Collister, R., et al., PRA 90, 052502 (2014)

• Hyperfine Anomaly in light Fr isotopes → Zhang, J. et al., PRL, 115, 042501 
(2015)

• Fr 7p3/2 photoionization → Collister, R. et al., Can J Phys 95(3), 234–237.

• 7s-8s isotope shift in Fr (2 photon) → Kalita, M. R. et al., PRA, 97, 042507 
(2018)
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Previous Measurements

12

This is very important for any 7s-8s 

transition!



7p3/2 photoionization 

• Single photon for APV uses 506 nm light

• 7p3/2 populate via decay or trap

• Provides additional loss mechanism to the MOT

• Enhanced with PBC
13

7s

8s

7p3/2

7p1/2
506 nm

506 nm

817 nm

718 nm

Continuum Collister, R. et al., Can J Phys 95(3), 

234–237.



7s-8s transition

• s-s typically E1 and M1 
forbidden

• Oscillator strengths:

• fStark~10-10 → for a few kV/cm

• fM1~10-13

• fPV~10-21

• APV to small to observe alone

• Observe interference 
between E1Stark and E1PV

14

෪| ۧ8𝑠 = | ۧ8𝑠 + 𝜖′| ۧ8𝑝

7p3/2

7p1/2

෪| ۧ7𝑠 = | ۧ7𝑠 + 𝜖| ۧ7𝑝

E1Stark M1 E1PV

F = 5

F = 4

F = 5

F = 4

211Fr

• Reversal of coordinate system → change in sign of interference term

• Example: electric field reversal

• 𝑅7𝑠−8𝑠 ∝ 𝐸1𝑆𝑡𝑎𝑟𝑘 +𝑀1 + 𝐸1𝑃𝑉
2



7s-8s transition rate
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7s-8s transition rate
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• Stark-induced components 

• α and β→ scalar and tensor 

polarizabilities, respectively

• α→ ΔF=0

• β→ ΔF=0, ±1

• α/ β ~ 5.05
• We use ΔF=±1 to avoid α
• To get ℇ1𝑃𝑉 we need 𝛽,𝑀𝑟𝑒𝑙 , and

𝑀ℎ𝑓 to sub-%

PV contribution

• M1 component 
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𝑀𝑟𝑒𝑙 ±𝑀ℎ𝑓𝛿𝐹𝐹′±1
𝛽

Extremely difficult to 

calculate. Has only been 

measured in Cs.

Needed for E1Stark–E1PV

interference experiment. Can 

be calculated reasonably well.

Calculate semi-empirically. 

𝑀ℎ𝑓 =
− Δ𝐸7𝑠

ℎ𝑓
Δ𝐸8𝑠

ℎ𝑓

𝐸8𝑠 − 𝐸7𝑠



• We can use Mhf to determine β and then Mrel in a series of measurements

• Need to measure the ratio for ΔF=±1

Importance of M1
• β cannot be measured alone → measure against M1

16

𝑀𝑟𝑒𝑙 ±𝑀ℎ𝑓𝛿𝐹𝐹′±1
𝛽

Calculate semi-empirically. 

𝑀ℎ𝑓 =
− Δ𝐸7𝑠

ℎ𝑓
Δ𝐸8𝑠

ℎ𝑓

𝐸8𝑠 − 𝐸7𝑠

Extremely difficult to 

calculate. Has only been 

measured in Cs.

Needed for E1Stark–E1PV

interference experiment. Can 

be calculated reasonably well.



Recent Measurement
• September 2021: Observed M1 using PBC

• First measurement of Mrel in francium

17



Recent Measurement
• September 2021: Observed M1 using PBC

• First measurement of Mrel in francium

17M1 transition @ 0 V/cm



Recent Measurement
• September 2021: Observed M1 using PBC

• First measurement of Mrel in francium

17

Measured transition 

rate for ΔF = -1 

transition

M1 transition @ 0 V/cm



Recent Measurement
• September 2021: Observed M1 using PBC

• First measurement of Mrel in francium

17

Measured transition 

rate for ΔF = -1 

transition

𝑅 ∝ 𝛽2𝐸2 +𝑀2

M1 transition @ 0 V/cm



Recent Measurement
• September 2021: Observed M1 using PBC

• First measurement of Mrel in francium

17

Measured transition 

rate for ΔF = -1 

transition

𝑅 ∝ 𝛽2𝐸2 +𝑀2

Mrel=???

Talk on this in a later

session

M1 transition @ 0 V/cm
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• Further amplification of signal is 
needed for APV

• Detection efficiency is ~1/4500

• Cycle atoms that have been excited 
via 7s-8s
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Recent development: Burst technique
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Cycle them using  

7s(F=5)-7p3/2(F=6) 

transition

7s1/2

8s1/2

F=5

F=5

F=4

F=6

F=5

F=4
F=3

F=5

F=4

F=4

7p3/2

7p1/2

• Further amplification of signal is 
needed for APV

• Detection efficiency is ~1/4500

• Cycle atoms that have been excited 
via 7s-8s

• Estimate 104 to 105 cycles for Fr 

We can also use 7s(F=4)-7p3/2(F=3) to 

cycle atoms that have been exited to 

8s(F=4) from 7s(F=5).



Burst observation in Fr
• Dec 2022: 211Fr burst using 7s(F=5)-7p3/2(F=6)

• PMT with 100-fold attenuation in front → not present in Sept 2021

• 10x less atoms, excitation 4x shorter, and 2x less 506 nm light than Sept 2021
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• PMT with 100-fold attenuation in front → not present in Sept 2021

• 10x less atoms, excitation 4x shorter, and 2x less 506 nm light than Sept 2021

19

1400 V/cm, β

transition

MOT lifetime from 

the burst seen using 

PMT 

~3800 cycles 

within the burst



• Burst are on cycling transitions → could destroy the atom cloud

• Burst signal is same as MOT light → possible large background

• Utilize the 7p3/2 state → risk of photoionization if overlapped with 506 nm

• Could produce a large signal → complications with detector
• i.e. linearity and protection of detector 

Challenges with the burst technique
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• Utilize the 7p3/2 state → risk of photoionization if overlapped with 506 nm

• Could produce a large signal → complications with detector
• i.e. linearity and protection of detector 

Challenges with the burst technique

20

Retroreflect the 

laser beam

Shutter light using 

AOM and timing 

schemes
Switching to SiPM with 

increased linearity and is 

more robust

Hamamatsu SiPM, 

linearity upwards of 11 

MHz



What’s next?

• Still need to measure ΔF=+1 to extract β

• Sub-% measurement of Mrel

• Next phase will be interference experiments 

• Atoms in a MOT are generally (but not completely) unpolarized

• Need to optically pump atoms into 𝑚𝐹 = ±𝐹 states

• Need to control magnetic fields used in the MOT

• Center of science chamber → magnetic field to zero in < 1ms

• Use 200 kHz bipolar power supplies from Matsusada

21
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• Using optically pumped atoms (late 2023 or 2024):
• Measure the ratio between the scalar and tensor polarizabilities 𝛼/𝛽
• Interference experiment between E1Stark-M1 (without PBC)

• Nearing first attempt of interference E1Stark-E1PV (2024-2025)
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