Towards an atomic parityviolation experiment in francium

Tim Hucko CAP 2023

1

Standard Model

- Classifies all known elementary particles
- Describes 3 of the 4 fundamental forces; mediated by bosons
- Very successful theory, but still missing
	- 1. Baryon asymmetry
	- 2. Gravity
	- 3. Dark energy
	- 4. Dark matter
- Search for new physics using (electro) weak interaction Leptoquarks^[1]
	- Change: quarks \leftrightarrow leptons
	- Unification of matter
	- Lower mass limit $\sim 1 \text{TeV}$
	- Z' boson^[1-4]
		- Neutral current that mixes with Z boson
		- Z' possible dark matter candidate

1

Standard Model of Elementary Particles

Standard Model

- Classifies all known elementary particles
- Describes 3 of the 4 fundamental forces; mediated by bosons
- Very successful theory, but still missing
	- 1. Baryon asymmetry
	- 2. Gravity
	- 3. Dark energy
	- 4. Dark matter
- Search for new physics using (electro) weak interaction Leptoquarks^[1]
	- Change: quarks \leftrightarrow leptons
	- Unification of matter
	- Lower mass limit \sim 1TeV
	- Z' boson^[1-4]
		- Neutral current that mixes with Z boson
		- Z' possible dark matter candidate

1

Standard Model of Elementary Particles

Atomic parity-violation (APV)

Z-boson exchange between electrons an nucleons (quarks) H_{PV} mixes s and p states $\longrightarrow \big\langle n s \big| H_{\mathsf{PV}}^{NSI} \big| n' p \big\rangle \propto Z^2 N^{[5,6]}$

- Dominates in heavy atoms
- Coherent over all nucleons
- Vector nucleon axial-vector electron interaction
- Connection to the Q_W
- NSD Z-exchange; Vector electron axial-vector nucleon
- Inter-nucleus interaction; anapole moment
	- Dominates in heavy atoms
- Hyperfine correction to the weak interaction

NSI Hamiltonian $H_{PV}^{NSI} =$ G_F $2\sqrt{2}$ ${\gamma}_5 \delta(r) Q_W$

NSI Hamiltonian $H_{PV}^{NSI} =$ G_F $2\sqrt{2}$ ${\gamma}_5 \delta(r) Q_W$

• Fermi constant

NSI Hamiltonian $H_{PV}^{NSI} =$ G_F $2\sqrt{2}$ ${\gamma}_5 \delta(r) Q_W$

- Fermi constant
- Weak interaction "zero" range \rightarrow electron at the nucleus

NSI Hamiltonian

- Fermi constant
- Weak interaction "zero" range \rightarrow electron at the nucleus
- $\langle ns | \gamma_5 | n'p \rangle$ matrix element depends on electronic wave function at the nucleus
	- Scales as *Z 2*

NSI Hamiltonian

$$
H_{PV}^{NSI} = \frac{G_F}{2\sqrt{2}} \gamma_5 \delta(r) Q_W
$$

- Fermi constant
- Weak interaction "zero" range \rightarrow electron at the nucleus
- $\langle ns|\gamma_5|n'p\rangle$ matrix element depends on electronic wave function at the nucleus
	- Scales as *Z²*
- Weak charge of the nucleus
	- $Q_W = 2(\kappa_{1p} Z + \kappa_{1n} N)$ • $\kappa_{1p} = \frac{1}{2} (1 - 4\sin^2 \theta)$ $_W) \approx 0.024$ • $\kappa_{1n} = \frac{1}{2}$ $Q_W^{A \prime}$ $^{APV}_{W} \approx N$

NSI Hamiltonian

• Fermi constant

 $H_{PV}^{NSI} =$

• Weak interaction "zero" range \rightarrow electron at the nucleus

 $\gamma_5\delta(r)Q_W$

- $\langle ns | \gamma_5 | n'p \rangle$ matrix element depends on electronic wave function at the nucleus
	- Scales as *Z 2*
- Weak charge of the nucleus

 G_F

 $2\sqrt{2}$

• $Q_W = 2(\kappa_{1p} Z + \kappa_{1n} N)$ • $\kappa_{1 p} =$ 1 2 $1 - 4\sin^2\theta_W$) ≈ 0.024 • $\kappa_{1n} =$ 1 2 $Q_W^{APV} \approx N$

- $APV \rightarrow Z^2N$
- Highly non-trivial to calculate matrix element
- Alkalis provide suitable systems for calculations
- Measured in $Cs(Z=55)$ ^[7]
- In Fr($Z=87$), APV effect is $\times 18$ larger compared to Cs(Z=55)

Electroweak interaction

- Running of the Weinberg angle: $Q_W \rightarrow \sin^2 \theta_W$
- APV tests at low momentum transfer
- Colored bands represents scenarios with dark Z' bosons

Gwinner & Orozco, Quantum Sci. Technol. 7, (2022).

- Electron-quark coupling constants
- Combination of results from PVES and APV (black ellipse) @ 95% CL
- Red dot is SM prediction

- Electron-quark coupling constants
- Combination of results from PVES and APV (black ellipse) @ 95% CL
- Red dot is SM prediction

J. Erler *et al.*, Annu. Rev. Nucl. Part. Sci. 64, 269 (2014).

 Λ_{new} (TeV)

32.3

 $\Delta \sin^2 \hat{\theta}_W(0)$

0.0019

Precision (%)

0.58

for new physics $(g^2=4\pi)$

5

- Electron-quark coupling constants
- Combination of results from PVES and APV (black ellipse) @ 95% CL
- Red dot is SM prediction

Dashed circles represents mass reaches for new physics $(g^2=4\pi)$

J. Erler *et al.*, Annu. Rev. Nucl. Part. Sci. 64, 269 (2014).

- Electron-quark coupling constants
- Combination of results from PVES and APV (black ellipse) @ 95% CL
- Red dot is SM prediction

J. Erler *et al.*, Annu. Rev. Nucl. Part. Sci. 64, 269 (2014).

The doctor of I prediction			Experiment	Precision $(\%)$	$\Delta \sin^2 \theta_W(0)$	Λ_{new} (TeV)
	APV 133CS Out (2018)	$A/g = 3$ TeV $A/g = 8$ TeV $A/g = 5$ TeV	$APV(^{133}Cs)$	0.58	0.0019	32.3
0.355			$SLAC-E158$	\overline{A}	0.0013	17.0
			JLab-Qweak (run I)	Impressive sensitivity provides strong motivation for APV as searches of new physics beyond SM!		17.0
			JLab-Qweak (final)			33
$0.345 +$			JLab-SoLID			22
			JLab-MOLLER			39
$C_{\rm rd}$			Mainz-P2			49
$0.335 +$			PVES (^{12}C)	0.3	0.0007	49
$0.325 +$	95% confidence level -0.20 -0.19	-0.18 C_{1u}	Dashed circles -0.17	represents mass reaches for new physics $(g^2=4\pi)$		
D. Androi'c et al., Nature 557, 207 (2018).						5

- Current best result is for Cs
	- 1997 by Boulder group
	- Performed interference experiment (more on this later)
	- Experimental accuracy $\rightarrow 0.35\%$
		- Other Cs measurements reach 12%^[8] and 2.6%^[9]

$$
\frac{-\operatorname{Im}(\mathcal{E}1_{PV})}{\beta} = \begin{cases} 1.6349(80) \text{ mV/cm} \rightarrow 6s(F=4) - 7s(F=3) \\ 1.5576(77) \text{ mV/cm} \rightarrow 6s(F=3) - 7s(F=4) \end{cases}
$$

- Current best result is for Cs
	- 1997 by Boulder group
	- Performed interference experiment (more on this later)
	- Experimental accuracy $\rightarrow 0.35\%$
		- Other Cs measurements reach 12%^[8] and 2.6%^[9]

$$
\frac{-\operatorname{Im}(\mathcal{E}1_{PV})}{\beta} = \begin{cases} 1.6349(80) \text{ mV/cm} \rightarrow 6s(F=4) - 7s(F=3) \\ 1.5576(77) \text{ mV/cm} \rightarrow 6s(F=3) - 7s(F=4) \end{cases}
$$

Average gives NSI contribution − ${\rm Im}(\epsilon_{PV}^{NSI}$ β $= 1.5935(56)$ mV/cm

- Current best result is for Cs
	- 1997 by Boulder group
	- Performed interference experiment (more on this later)
	- Experimental accuracy \rightarrow 0.35%
		- Other Cs measurements reach 12%^[8] and 2.6%^[9]

$$
\frac{-\operatorname{Im}(\mathcal{E}1_{PV})}{\beta} = \begin{cases} 1.6349(80) \text{ mV/cm} \rightarrow 6s(F=4) - 7s(F=3) \\ 1.5576(77) \text{ mV/cm} \rightarrow 6s(F=3) - 7s(F=4) \end{cases}
$$

Average gives NSI contribution − ${\rm Im}(\epsilon_{PV}^{NSI}$ β $= 1.5935(56)$ mV/cm Difference gives NSD contribution $\text{Im}(\epsilon_1_{PV}^{NSD}$ β $= 0.077(11)$ mV/cm

- Current best result is for Cs
	- 1997 by Boulder group
	- Performed interference experiment (more on this later)
	- Experimental accuracy \rightarrow 0.35%
		- Other Cs measurements reach 12%^[8] and 2.6%^[9]

$$
\frac{-\operatorname{Im}(\mathcal{E}1_{PV})}{\beta} = \begin{cases} 1.6349(80) \text{ mV/cm} \rightarrow 6s(F=4) - 7s(F=3) \\ 1.5576(77) \text{ mV/cm} \rightarrow 6s(F=3) - 7s(F=4) \end{cases}
$$

Average gives NSI contribution − ${\rm Im}(\epsilon_{PV}^{NSI}$ β $= 1.5935(56)$ mV/cm

Difference gives NSD contribution $\text{Im}(\epsilon_1_{PV}^{NSD}$ β $= 0.077(11)$ mV/cm

1999 improved $Q_W = -72.06(28)$, by measuring β using the 6s-7s M1 transition^[10] \rightarrow Progress made in measuring M1 in Fr!

- New result for APV in 2019, Antypas, *et al.,* Nat. Phys. 15, 120 (2019).
- Used Ytterbium; $N = 170, 172, 174,$ and 176

7

- New result for APV in 2019, Antypas, *et al.,* Nat. Phys. 15, 120 (2019).
- Used Ytterbium; $N = 170, 172, 174,$ and 176

in atomic system

Same interference experiment as Cs.

• New result for APV in 2019, Antypas, *et al., Nat. Phys.* 15, 120 (2019).

• Used Ytterbium; $N = 170, 172, 174,$ and 176

Future APV with francium

- Heaviest of the alkalis (Z=87)
	- APV ~18x larger than Cs
- Simple atomic structure \rightarrow single valence electron
- Main drawback: highly radioactive
	- No abundant source on earth
- Need radioactive facility \rightarrow ISAC I at TRIUMF
- Boulder group had thermal beam of 10^{13} Cs atoms/s \rightarrow not feasible with Fr
- Solution: Use magneto-optical trap (MOT)
	- Need 10⁶-10⁷ trapped atoms to achieve comparable signal to Cs

Electric field plates and PBC

- Indium tin oxide (ITO) transparent field plates
	- Separation is 2.858 ± 0.003 cm
- PBC developed during the pandemic
- Build-up factor of ~4000

Previous Measurements

- Test atomic theory using allowed transitions
- 7s-7p_{1/2} isotope shift in Fr → Collister, R., *et al., PRA 90,* 052502 (2014)
- Hyperfine Anomaly in light Fr isotopes → Zhang, J. *et al., PRL*, 115, 042501 (2015)
- Fr $7p_{3/2}$ photoionization \rightarrow Collister, R. *et al.*, *Can | Phys* 95(3), 234–237.
- 7s-8s isotope shift in Fr (2 photon) → Kalita, M. R. *et al.*, *PRA*, 97, 042507 (2018)

Previous Measurements

- Test atomic theory using allowed transitions
- 7s-7p_{1/2} isotope shift in Fr → Collister, R., *et al., PRA 90*, 052502 (2014)
- Hyperfine Anomaly in light Fr isotopes → Zhang, J. *et al., PRL*, 115, 042501 (2015)
- Fr $7p_{3/2}$ photoionization \rightarrow Collister, R. *et al.*, *Can | Phys* 95(3), 234–237.
- 7s-8s isotope shift in Fr (2 photon) → Kalita, M. R. *et al.*, *PRA*, 97, 042507 (2018)

This is very important for any 7s-8s transition!

$7p_{3/2}$ photoionization

- Provides additional loss mechanism to the MOT
	- Enhanced with PBC 13

7s-8s transition

- s-s typically E1 and M1 forbidden
- Oscillator strengths:
- f_{Stark} ~10⁻¹⁰ \rightarrow for a few kV/cm
- f_{M1} ~10⁻¹³
- f_{PV} ~ 10⁻²¹
- APV to small to observe alone
- Observe interference between $E1_{Stark}$ and $E1_{PV}$

 $|8s\rangle = |8s\rangle + \epsilon' |8p\rangle$ $/p_{3/2}$ $7p_{1/2}$ $|7s\rangle = |7s\rangle + \epsilon |7p\rangle$ $E1_{PV}$ $F = 5$ $F = 4$ $F = 5$ $F = 4$ $211Fr$

- Reversal of coordinate system \rightarrow change in sign of interference term
	- Example: electric field reversal

•
$$
R_{7s-8s} \propto |E1_{Stark} + M1 + E1_{PV}|^2
$$

 $R_{7s-8s} \propto |\alpha(\hat{\varepsilon} \cdot \vec{E}) \delta_{mm'} + (\beta(\hat{\varepsilon} \times \vec{E}) + M + \text{Im}(\epsilon 1_{PV})) \langle F'm'|\vec{\sigma}|Fm\rangle|^2$

$$
R_{7s-8s} \propto \left| \alpha(\hat{\varepsilon} \cdot \vec{E}) \delta_{mm'} + (\beta(\hat{\varepsilon} \times \vec{E}) + M + \text{Im}(\epsilon 1_{PV})) \langle F'm' | \vec{\sigma} | Fm \rangle \right|^2
$$

- Stark-induced components
- α and $\beta \rightarrow$ scalar and tensor polarizabilities, respectively
- $\alpha \rightarrow \triangle F = 0$
- \bullet $\beta \rightarrow \Delta F=0, \pm 1$
- $\alpha/\beta \sim 5.05$

 $R_{7s-8s} \propto |\alpha(\hat{\varepsilon} \cdot \vec{E}) \delta_{mm'} + (\beta(\hat{\varepsilon} \times \vec{E}) + M + \text{Im}(\epsilon 1_{PV})) \langle F'm' | \vec{\sigma} | Fm \rangle|^2$

- Stark-induced components
- α and $\beta \rightarrow$ scalar and tensor polarizabilities, respectively
- $\alpha \rightarrow \Delta F = 0$
- $\beta \rightarrow \Delta F=0, \pm 1$
- α/β \sim 5.05
- M1 component
- $M = M_{rel} \pm M_{hf} \delta_{FF' \pm 1}$
- For Fr, $M_{\text{hf}} \sim 12\%$ contribution to M

- Stark-induced components
- α and $\beta \rightarrow$ scalar and tensor polarizabilities, respectively
- $\alpha \rightarrow \Delta F = 0$
- $\beta \rightarrow \Delta F = 0, \pm 1$
- α/β \sim 5.05
- M1 component
- $M = M_{rel} \pm M_{hf} \delta_{FF' \pm 1}$
- For Fr, $M_{\text{hf}} \sim 12\%$ contribution to M

- Stark-induced components
- α and $\beta \rightarrow$ scalar and tensor polarizabilities, respectively
- $\alpha \rightarrow \triangle F = 0$
- $\beta \rightarrow \Delta$ F=0, ±1
- α/β ~ 5.05
- M1 component
- $M = M_{rel} \pm M_{hf} \delta_{FF' \pm 1}$
- For Fr, $M_{\text{hf}} \sim 12\%$ contribution to M
- We use $\Delta F = +1$ to avoid α
- To get $\mathcal{E}1_{PV}$ we need β , M_{rel} , and M_{hf} to sub-%

 $M_{rel} \pm M_{hf} \delta_{FF'\pm 1}$ $\overline{\mathcal{B}}$

- We can use M_{hf} to determine β and then M_{ref} in a series of measurements
- Need to measure the ratio for ΔF=±1

- September 2021: Observed M1 using PBC
- First measurement of M_{rel} in francium

- September 2021: Observed M1 using PBC
- First measurement of M_{rel} in francium

- September 2021: Observed M1 using PBC
- First measurement of M_{rel} in francium

Measured transition rate for $\Delta F = -1$ transition

- September 2021: Observed M1 using PBC
- First measurement of M_{rel} in francium

Measured transition rate for $\Delta F = -1$ transition

- September 2021: Observed M1 using PBC
- First measurement of M_{rel} in francium

Measured transition rate for $\Delta F = -1$ transition

- Further amplification of signal is needed for APV
- Detection efficiency is ~1/4500
- Cycle atoms that have been excited via 7s-8s
- Estimate 10⁴ to 10⁵ cycles for Fr

- Further amplification of signal is needed for APV
- Detection efficiency is ~1/4500
- Cycle atoms that have been excited via 7s-8s
- Estimate 10⁴ to 10⁵ cycles for Fr

- Further amplification of signal is needed for APV
- Detection efficiency is ~1/4500
- Cycle atoms that have been excited via 7s-8s
- Estimate 10⁴ to 10⁵ cycles for Fr

- Further amplification of signal is needed for APV
- Detection efficiency is ~1/4500
- Cycle atoms that have been excited via 7s-8s
- Estimate 10⁴ to 10⁵ cycles for Fr

- Further amplification of signal is needed for APV
- Detection efficiency is ~1/4500
- Cycle atoms that have been excited via 7s-8s
- Estimate 10⁴ to 10⁵ cycles for Fr

We can also use $7s(F=4)-7p_{3/2}(F=3)$ to cycle atoms that have been exited to 8s(F=4) from 7s(F=5).

Burst observation in Fr

- Dec 2022: ²¹¹Fr burst using $7s(F=5)-7p_{3/2}(F=6)$
- PMT with 100-fold attenuation in front → not present in Sept 2021
- 10x less atoms, excitation 4x shorter, and 2x less 506 nm light than Sept 2021

Burst observation in Fr

- Dec 2022: 211 Fr burst using 7s(F=5)-7 $p_{3/2}$ (F=6)
- PMT with 100-fold attenuation in front → not present in Sept 2021
- 10x less atoms, excitation 4x shorter, and 2x less 506 nm light than Sept 2021

Burst observation in Fr

- Dec 2022: 2^{11} Fr burst using 7s(F=5)-7 $p_{3/2}$ (F=6)
- PMT with 100-fold attenuation in front → not present in Sept 2021
- 10x less atoms, excitation 4x shorter, and 2x less 506 nm light than Sept 2021

- Burst are on cycling transitions \rightarrow could destroy the atom cloud
- Burst signal is same as MOT light \rightarrow possible large background
- Utilize the $7p_{3/2}$ state \rightarrow risk of photoionization if overlapped with 506 nm
- Could produce a large signal \rightarrow complications with detector
	- i.e. linearity and protection of detector

Retroreflect the laser beam

- Burst are on cycling transitions \rightarrow could destroy the atom cloud
- Burst signal is same as MOT light \rightarrow possible large background
- Utilize the $7p_{3/2}$ state \rightarrow risk of photoionization if overlapped with 506 nm
- Could produce a large signal \rightarrow complications with detector
	- i.e. linearity and protection of detector

Retroreflect the laser beam

- Burst are on cycling transitions \rightarrow could destroy the atom cloud
- Burst signal is same as MOT light \rightarrow possible large background
- Utilize the $7p_{3/2}$ state \rightarrow risk of photoionization if overlapped with 506 nm
- Could produce a large signal → complications with detector
	- i.e. linearity and protection of detector

Shutter light using AOM and timing schemes

Retroreflect the laser beam

- Burst are on cycling transitions \rightarrow could destroy the atom cloud
- Burst signal is same as MOT light \rightarrow possible large background
- Utilize the $7p_{3/2}$ state \rightarrow risk of photoionization if overlapped with 506 nm
- Could produce a large signal → complications with detector
	- i.e. linearity and protection of detector

Switching to SiPM with schemes increased linearity and is more robust

Hamamatsu SiPM, linearity upwards of 11 MHz

Shutter light using AOM and timing

What's next?

- Still need to measure $\Delta F = +1$ to extract β
- Sub-% measurement of M_{rel}
- Next phase will be interference experiments
- Atoms in a MOT are generally (but not completely) unpolarized
- Need to optically pump atoms into $m_F = \pm F$ states
- Need to control magnetic fields used in the MOT
	- Center of science chamber → magnetic field to zero in < 1ms
- Use 200 kHz bipolar power supplies from Matsusada

What's next?

- Still need to measure $\Delta F = +1$ to extract β
- Sub-% measurement of M_{rel}
- Next phase will be interference experiments
- Atoms in a MOT are generally (but not completely) unpolarized
- Need to optically pump atoms into $m_F = \pm F$ states
- Need to control magnetic fields used in the MOT
	- Center of science chamber → magnetic field to zero in < 1ms
- Use 200 kHz bipolar power supplies from Matsusada

Attempt for August 2023

What's next?

- Still need to measure $\Delta F = +1$ to extract β
- Sub-% measurement of M_{rel}
- Next phase will be interference experiments
- Atoms in a MOT are generally (but not completely) unpolarized
- Need to optically pump atoms into $m_F = \pm F$ states
- Need to control magnetic fields used in the MOT
	- Center of science chamber → magnetic field to zero in < 1ms
- Use 200 kHz bipolar power supplies from Matsusada
- Using optically pumped atoms (late 2023 or 2024):
	- Measure the ratio between the scalar and tensor polarizabilities α/β
	- Interference experiment between $E1_{Stark}$ -M1 (without PBC)
- Nearing first attempt of interference $E1_{Stark}$ - $E1_{PV}$ (2024-2025)

Attempt for August 2023

References

- [1] K. Cheung, Phys. Lett. B 517, 167 (2001).
- [2] J. Erler, A. Kurylov, and M. J. Ramsey-Musolf, Phys. Rev. D 68,1 (2003).
- [3] R. Diener, S. Godfrey, and I. Turan, Phys. Rev. D 86, 1 (2012).
- [4] C. Bouchiat and P. Fayet, Phys. Lett. B 608, 87 (2005).
- [5] M. A. Bouchiat and C. Bouchiat, J. Phys. 35, 899 (1974).
- [6] M. A. Bouchiat and C. Bouchiat, J. Phys. 36, 493 (1975).
- [7] C. S. Wood, *et al.,* Science 275, 1759 (1997).
- [8] M. A. Bouchiat, *et al.*, Atomic, J. Phys. 47, 1709 (1986).
- [9] J. Gu´ ena, M. Lintz, and M. A. Bouchiat, Phys. Rev. A At. Mol. Opt. Phys. 71, 1 (2005).
- [10] S. C. Bennett and C. E. Wieman, Phys. Rev. Lett. 82, 205 (1999).

University of Manitoba:

Tim Hucko, Iris Halilovic, Tasanul Morshed, Anima Sharma, Gerald Gwinner (PI)

TRIUMF:

Mukut Kalita, Alexandre Gorelov, Matt Pearson, Andrea Teigelhoefer, John Behr, Liang Xie

University of Maryland:

Luis Orozco

College of William and Mary:

Seth Aubin

Universidad Autónoma de San Luis Potosí:

Eduardo Gomez

Funding by:

