Current Status of the TUCAN EDM Experiment

M McCrea

University of Winnipeg TRIUME Ultra-Cold Advanced Neutron Collaboration

> CAP 2023 Fredericton 2023/06/20

TRIUMF Ultra-Cold Advanced Neutron Source and EDM experiment

What is an nEDM?

The electric dipole moment, d for two charges of opposite sign and equal magnitude q separated by distance r is classically defined as

The neutron will have an EDM is there is an average separation of the oppositely charged quarks.

Why Measure a Neutron EDM?

- Neutron EDM searches are part of a searches for new sources of CP violation in the Standard Model.
- The Hamiltonian for a neutron in an electric and magnetic field can be written as:

$$\mathbf{H} = -\mu \mathbf{B} \frac{\mathbf{s}}{\mathbf{s}} - d\mathbf{E} \frac{\mathbf{s}}{\mathbf{s}}$$

and under a time inversion transformation

$$T\mathbf{H} = -\mu \mathbf{B} \frac{\mathbf{s}}{\mathbf{s}} + d\mathbf{E} \frac{\mathbf{s}}{\mathbf{s}}$$

• the EDM term violates time reversal symmetry T, and from the CPT theorem, also violates CP symmetry.

History of nEDM Measurements

- Current Best Limit: $d_n < 1.8 \times 10^{-26} e \cdot cm \text{ (90\% C.L.)}$ from PSI experiment, C. Abel et al., PRL 124, 081803 (2020)
- The TUCAN collaboration aims to make a measurement sensitive to $1 \times 10^{-27} e \cdot cm$.
- Red point is the first experiment ever to use a "superthermal" UCN source.
- We plan to make the curve take a sharp downward turn, using new UCN source technology.

nEDM Measurement Method

$$\mathbf{H} = -\mu \mathbf{B} \frac{\mathbf{s}}{s} - d\mathbf{E} \frac{\mathbf{s}}{s}$$
 $\hbar \omega_n^{\uparrow \uparrow} = \mu B + dE$

$$T\mathbf{H} = -\mu \mathbf{B} \frac{\mathbf{s}}{s} + d\mathbf{E} \frac{\mathbf{s}}{s}$$

 $\hbar \omega_n^{\uparrow\downarrow} = \mu \mathbf{B} - d\mathbf{E}$

$$\hbar\omega_n^{\uparrow\uparrow} - \hbar\omega_n^{\uparrow\downarrow} = 2dE$$

UCN Production Method

Horizontal source upgrade

TUCAN Source Upgrade Concept and Goals

- LD₂ moderator
 - increase cold neutron flux at 1 meV (×2.5)
- Helium Cryostat with high cooling power
 - production volume (×3)
 - proton beam power (×50)
 - 0.5 kW -> 20 kW
 - heat load on superfluid: 8.1 W
 - · include heat deposit on vessel
 - superfluid helium temperature (× 1/3)
 - T_{He-II} = 1.2 K (0.8 K@RCNP)
 - Storage lifetime : ~ 30 sec
- Estimated source performance
 - production rate: 1.4 x 10⁷ UCN/s
 - UCN density
 - 6 × 10³ UCN/cm³ @ production
 - ~220 UCN/cm³ @ measurement

9

Measurement Method Revisited

- This requires a 1 μT holding field that has gradients smaller than 1 nT/m, and is stable to 1 pT over 100 s
- Using double cells also requires the linear gradient between the cells to be less than 10pT/m to match the precession frequency between the cells for measurement method.
- Insufficient uniformity will depolarized the neutrons over the measurement cycle, or cause a measurement of a false nEDM.

Sensitivity Estimates

UCN production rate	$1.4 imes 10^7$ UCN/sec	
UCN loaded into EDM cell	220 pol. UCN/cm ³	14M UCN
UCN detected at end of cycle	23 pol. UCN/cm ³	1.4M UCN

S. Sidhu, et al. arXiv:2212.04958 (SSP 2022 conf. proc.)

Compare to typ **15,000 UCN** detected at previous best expt. (ILL/PSI), and **121,000 UCN** projected for n2EDM

N. Ayres, et al., Eur. Phys. J. C 81, 512 (2021)

$$\sigma_d = \frac{\hbar}{2\alpha E t_c \sqrt{N}}$$

E = 12.5 kV/cm

$$t_c = 188 s$$

 $\alpha = 0.6$ (visibility)

$$\sigma_{\rm d}$$
 = 2 x 10⁻²⁵ ecm/cycle

To reach statistical sensitivity of $\underline{\sigma}_d = 1 \times 10^{-27}$ ecm 400 days of running required

article doi: https://doi.org/10.1051/epjconf/202328201015

Magnetic Environment

 The proximity to the TRIUMF cyclotron creates an elevated local magnetic field in the hall.

ullet Hall Field: \sim 370 μT

ullet Earth Field: $30-60\,\mu\mathrm{T}$

 \bullet From this ambient field we need to provide a field in the measurement cells that is only 1 μT vertically.

Layout in our area in Meson Hall at TRIUMF

Status fall 2022

MSR Construction First Layers

MSR Door Installation

MSR Door Installation

MSR Door Installation

Next Milestone - Shielding Factor Tests

Pre-installation measurement, Sept. 2022

- The shielding factor of a MSR is the factor by which it reduces external magnetic fields.
- Now that the copper layer (and door and floor mu-metal) are installed the first-layer shielding factor measurements for the room are underway this week.

B0 Coil Design

Self-shielded coil design

Exo-skeleton coil support

B0 Coil Prototype

- Assembly of full-sized prototype module and initial winding was completed Friday last week.
- Analysis of measurements and non-contact point map is under way.
- Initial Results show deflections of $1-3\,\mathrm{mm}$ from design under its own weight, target was $< 1\,\mathrm{mm}$; will be fixed in final version which uses more robust construction

TUCAN Subsystems

TUCAN Subsystems

Testing at J-PARC

Collimator & Mirror UCN Guide Doppler shifter ³He detector

Cell and Valve

UCN Guide

UCN Polarizer

Images courtesy of Takashi Higuchi

Thank You

The TUCAN Collaboration

Spare Slides

NxN Coils

