Fundamental Symmetries in Nuclear Physics: Theoretical Overview

Outline:

- Standard Model: surviving all attempts to replace it by anything "Beyond"
 - nothing seen at LHC
 - muon g-2 discrepancy seems to have dramatically decreased
 - proton radius puzzle seems to have been solved
- Symmetry-violation searches : may be the best chance to find New Physics
 - P: neutral currents;
 - CP: electric dipole moments: electron; neutron;
 - Beta decays
- Conclusions

CAP Congress 2023 Fredericton

Andrzej Czarnecki University of Alberta

From an LHC talk by Andre Sopczak, last month:

Conclusions – Highlights of Higgs physics Beyond the SM

- □ Very successful LHC Run-2 operation, over 160 fb⁻¹ (Run-1 and Run-2)
- Precision measurements of
 - Higgs boson decay branching fractions and total width
 - Relation of coupling to mass
 - CP-invariance
 - rare decays, LFV, dark photons, exotics (searches)
- □ No indication for BSM physics: enhanced production modes
 - Associated production of single top and Higgs
 - Self-coupling HHH, di-Higgs production
- ☐ Limits on new Higgs bosons and unexpected decays
 - Additional Higgs bosons decaying to taus, and photons
 - Heavy Higgs bosons in VHH and ttH/A
 - Single and doubly charged Higgs bosons

Outlook

- Combinations of ATLAS and CMS results to double statistics
- ☐ LHC Run-3 started anticipated to add 300 fb⁻¹ (2022 to 2025). HL-LHC approved for 3000 fb⁻¹ (2029 -): new era of measurement precision
- Strong and approved LHC programme for new discoveries

A.Sopczak, 23 May 2023

Muon q-2 after BMW and CMD3

Alberto Lusiani for the Muon g-2 Collaboration

New in 2023: role of General Relativity in low/medium-energy physics

2306.05389

J/Y

Towards distinguishing Dirac from Majorana neutrino mass with gravitational waves

Stephen F. King,^a Danny Marfatia,^b and Moinul Hossain Rahat^a

Jun 15, 2023 Charged black holes used as intuitive models.

Determining the gluonic gravitational form factors of the proton

Nature | Vol 615 | 30 March 2023 | 813

Beta-decays

isospin; new charged gauge bosons; dark matter; CKM unitarity, ...

TITAN

Anna Kwiatkowski

TRIUMF's neutral atom trap

John Behr neutrino helicity, T-violation

Nab

Nick Macsai

Parity violation

new neutral gauge bosons, leptoquarks, ...

MOLLER

Dustin McNulty

Brynne Blaikie

 $0.1\% \; \theta_{
m W}$

francium

Timothy Hucko

Anima Sharma

CP, T violation

Pear-Shaped Nuclei in the FRIB Era

Jaideep Singh

EDM

radioactive molecules

TUCAN neutron EDM

Mark McCrea World's highest-density

Sean Vanbergen ultracold neutron (UCN) source

Radioactive molecules

Ivana Belosevic

198Hg(d, d')

Sally Valbuena nuclear Schiff moments

Lepton number violation

nEXO

Soud Al Kharusi

CPT, matter-antimatter

ALPHA-g

free-fall of antihydrogen

Tim Friesen

Pooja Woosaree

Neutral currents and parity violation

See talks later today:

MOLLER
Dustin McNulty
Brynne Blaikie

francium
Timothy Hucko
Anima Sharma

Neutral currents: PV in Moller scattering

Last measured at E158, SLAC

Very small asymmetry,

$$A_{LR} \sim 1 - 4\sin^2\theta_W$$

Suppressed vector coupling of Z to leptons and the proton.

The same factor in ep: Qweak

Opportunity for effects of new gauge bosons Z'; interference with dark photons.

Neutral currents and APV: the weak charge Qw

 Q_W characterizes Z-boson's vector coupling; simplifies at $s^2 = 1/4$:

$$2cg_V = e\left(2I^3 - Q\right) \qquad \frac{2cg_V}{e} = \begin{cases} 1 - \frac{2}{3} = \frac{1}{3} & u \\ -1 + \frac{1}{3} = -\frac{2}{3} & d \\ 1 & \nu \\ -1 + 1 = 0 & e^- \end{cases}$$

$$p: \quad 2u + d \rightarrow \frac{2}{3} - \frac{2}{3} = 0,$$

$$n: \quad u + 2d \rightarrow \frac{1}{3} - \frac{4}{3} = -1.$$

To a good approximation, Q_W of a nucleus = - number of neutrons

Weak charge:
$$Q_W = \rho \left[-N + Z \left(1 - 4 \sin^2 \theta_W \right) \right]$$

¹³³Cs: Standard Model: $Q_W^{SM} = -73.19(13)$ Marciano & Rosner

Boulder measurement:
$$Q_W^{\text{exp}} = -72.74(29)_{\text{exp}}(36)_{\text{th}}$$

Running of the weak mixing angle

Large, 40% corrections to asymmetry A_{LR} , dominated by mixing,

Energy-dependent → running.

Tend to decrease the SM asymmetry.

An aside: atomic parity in politics

The Atomic Bomb

Soviet Achievement of Nuclear Parity

Optical activity: rotation of the polarization

Equivalent point of view: birefringence: different speed of right- and left-handed photons.

Optical activity: rotation of the polarization

Z-boson exchange generates a helical structure in an atom

Khriplovich

$$u_e \sim \left(egin{array}{c} \phi \ rac{m{\sigma} \cdot m{p}}{2m} \phi \end{array}
ight) \quad ar{u}_e \gamma^0 \gamma^5 u_e \sim \phi^\dagger m{\sigma} \cdot m{p} \phi$$

 $\Delta H \sim \frac{G_F}{m} \delta^3\left(m{r} \right) m{\sigma} \cdot m{p} \qquad o \ \, \mathrm{p}_{\mathrm{1/2}} \ \mathrm{admixture} \ \mathrm{in} \ \mathrm{the} \ \mathrm{ground} \ \mathrm{state}.$

$$\begin{pmatrix} -\frac{1}{\sqrt{3}}Y_{10} \\ \sqrt{\frac{2}{3}}Y_{11} \end{pmatrix} = -\frac{\boldsymbol{\sigma} \cdot \boldsymbol{n}}{\sqrt{4\pi}} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

this creates an anapole moment

Anapole moment violates P

Note: anapole moment preserves T-symmetry: both the momentum and the spin reverse.

P violation but not CP violation

The P-violating correction to the wave function we found is ~ P-wave

Since the correction has an imaginary coefficient, the resulting density is symmetric up-down,

$$\langle \boldsymbol{r} | \psi \rangle = \langle \boldsymbol{r} | 1s_{1/2} \rangle + ic \langle \boldsymbol{r} | 2p_{1/2} \rangle$$

$$\langle \boldsymbol{r} | 2p_{1/2} \rangle = \frac{1}{2\sqrt{6a^3}} \frac{r}{a} e^{-r/2a} \left(\sqrt{\frac{2}{3}} Y_{11} \phi^- - \frac{1}{\sqrt{3}} Y_{10} \phi^+ \right)$$

$$|\langle \boldsymbol{r}|\psi\rangle|^2 = a^2 Y_{00}^2 + d^2 Y_{11}^{\star} Y_{11}.$$

No EDM results.

CP-violating effects: EDM

Example:

$$\mathcal{L}_{\pi NN} = \pi \cdot \vec{N} \tau (i \gamma_5 g_{\pi NN} + \overline{g}_{\pi NN}) N$$

Crewther, Di Vecchia, Veneziano, Witten

Electric dipole moments (EDM)

Jacinda Ginges

Dedicated talks:

Pear-Shaped Nuclei in the FRIB Era

Jaideep Singh

EDM

radioactive molecules

TUCAN neutron EDM

Mark McCrea World's highest-density

Sean Vanbergen ultracold neutrons (UCN)

Radioactive molecules

Ivana Belosevic

198Hg(d, d')

Sally Valbuena nuclear Schiff moments

Neutron EDM

Neutron EDM measured by the nEDM collaboration (2020):

$$d_{\rm n} = (0.0 \pm 1.1_{\rm stat} \pm 0.2_{\rm sys}) \times 10^{-26} e \,\mathrm{cm}$$

C. Abel et al., Phys. Rev. Lett. 124 (2020), 081803

← The next goal: n2EDM

Neutron and deuteron EDM: old predictions

Electron EDM: old predictions e-edm, 10⁻³² 2009 Cornell Gould Molecules Hinds, 10⁻²⁹ Ңeinzen Shafer-Ray, 10⁻²⁸ Weiss, 4 x 10⁻³⁰ Atoms ∕DeMille, fewer x 10⁻²⁸ 2007 Hinds, few x 10⁻²⁸ 2006 Present bound: TI, 1.6×10^{-27} Recent progress: ACME II (2018) $d_e < 1.1 \cdot 10^{-29} \, \mathrm{e} \cdot \mathrm{cm}$ Solid state Eric Cornell et al (2022) $d_e < 4.1 \cdot 10^{-30} \, \mathrm{e} \cdot \mathrm{cm}$ Lamoreaux Liu Hunter

Charged currents: beta decay

For details, see these talks:

TITAN

Anna Kwiatkowski

TRIUMF's neutral atom trap

John Behr neutrino helicity, T-violation

Nab

Nick Macsai

g_A from neutron decay: crucial for solar physics

Recent determinations: from correlations of electron or neutrino momenta with the neutron spin.

Nab experiment: different observable: electron-neutrino momenta correlation.

Example of impact:

Precise knowledge of g_A is important for understanding sun-like stars.

Recent progress in Radiative Corrections

Dispersion relation analysis of the radiative corrections to g_A in the neutron β -decay

Mikhail Gorchtein¹ and Chien-Yeah Seng²

2106.09185

Precision better than 10⁻⁴. Matches anticipated precision of Nab.

Summary

- Collider experiments have not found New Physics yet
- Precision tests of fundamental symmetries are likely our best hope
- Canada has a vigorous and multifaceted program in precision measurements (and theory)
- EDMs exist and Lepton Flavors are not conserved even in the Standard Model; its extensions greatly enhance them; let's find them!

Determining the gluonic gravitational form

- Beyond earlier studies of the charge and spin distributions in the proton;
- New parameter: proton mass radius 0.52(3) fm.

What does the muon g-2 tell us about the new physics and the EDM?

$$a_{\mu}^{\text{NP}} \frac{e}{2m} \bar{\mu} \sigma \cdot F \mu \rightarrow d^{\text{CP}} \frac{e}{2m} \bar{\mu} \gamma_5 \sigma \cdot F \mu$$

$$a_{\mu}^{\text{NP}} \sim 10^{-9} \rightarrow d^{\text{CP}} \frac{e}{2m} \sim a_{\mu}^{\text{NP}} \frac{e}{2m} \sim 10^{-9} \frac{e}{1 \text{ fm}} = 10^{-22} e \cdot \text{cm}$$

Similar encouragement for lepton flavor violation.