4D detector workshop

Sensors for the next tracking detector

Luise Poley

Canada: a major ATLAS ITk player

QC for 50% of all end-cap sensors, QC for majority of readout chips, assembly+tests of 50% of all end-cap hybrids, assembly+tests of 25% of end-cap modules and 25% of integrated end-cap structures

coordinator for global

hybrid/module assembly

***TRIUMF**

Side note: assembly

One of the major ITk efforts in Vancouver is the assembly and testing of larger structures (and all the infrastructure needed to do it)

- Cleanrooms with dry air and vacuum system
- Assembly/loading system (gantry)
- Coordinate measurement machine
- Wire bonders
- Optical inspection systems
- Cold test system

Plan to be involved in the assembly of the next tracking detector as well, but not the focus of today

STRIUME

Current efforts in Vancouver

Fully equipped cleanrooms for quality control for silicon strip sensors for ATLAS ITk (about 2000 sensors total)

- High resolution imaging
- Shape measurements
- High-volume tests in parallel:
 - Bulk capacitance
 - Leakage current
 - Leakage current stability
- Electrical tests per strip

In parallel: development of setups for further characterisation and defect analysis (for Itk sensors)

- Defect curing with UV light
- Defect detection
- Laser test setup
- Measurements in X-ray beam (AREA-X)

Towards the next tracking detector

Plan to participate in sensor testing effort as well:

R&D, prototype testing, maybe production testing

STRIUME

SFI

Manufacturing experience

Production sensors

ATLAS07 sensors:

- + great electrical performance
- mechanically out of spec (too bent)

ATLAS07 sensors:

- + improved bow
- early breakdowns

Lengthy investigations to identify cause: humidity Assembly flow adjustment: Everything to be kept dry Process adjustments

Prototype sensors

Produced by CNM for module prototypes

- early breakdowns
- + replacements made
- occasional problems of individual sensors
- + experiments with new geometries and techniques
- + short turnaround between sensors and module assembly

Sensors for Market Survey

Designed by ITk member in cooperation with experienced company

- early versions showed early breakdowns
- + very close collaboration between project and company

Designer now at SFU!

Local manufacturing capabilities

Significant advantages to being able to produce our own devices Several steps are somewhat covered already

- Design: local expertise in Vancouver
- Simulation: being built up at TRIUMF
- Fabrication: devices for most steps existing at 4DLabs (SFU)
 - Successful production of 2-layer 6" devices, using lithography for top layer metallisation
 - Option to get ion implanter (if demand justifies maintenance cost)
 - Option to cooperate with other facilities (looking into Molecular Foundry at LBNL, prior collaborations)
 - Option to try and cooperate with existing partners
- Work needed to actually start fabrication
- Local experience to in debugging fabrication processes
- Option to pool resources to build up more demand?

Going forward

Aim to participate in building the next tracking detector and contribute

- Existing assembly/testing infrastructure
- Access to the TRIUMF irradiation facility
- Experience in beam test experiments (CLS, DLS, electron beam tests)

Aim to investigate options to produce our own devices
Build on existing infrastructure: CMC,
4Dlabs, ...

Ideally: find collaborators interested in manufacturing devices in Canada to establish a whole fabrication chain

Tests at TRIUMF PIF facility, December 2020

Diamond Light Source, May 2022

