Displaced Vertex Search for Heavy Neutral Leptons using the ATLAS Detector

Dominique Trischuk

Brandeis University/ University of British Columbia

Canadian Association of Physicists PPD Division Thesis Prize Talk June 6, 2022

Acknowledgements — Thank you!

THE UNIVERSITY **OF BRITISH COLUMBIA**

CAP Thesis Prize Award Sponsors:

Canadian Association of Physicists Particle Physics Division

Outline

Displaced Vertex Search for Heavy Neutral Leptons

 Signal model • Discriminating variable: HNL mass Background estimation Results

- Best-known description of fundamental particles and their interactions (except gravity)
- Neutrino oscillations suggest $m_{\nu} > 0$
- Non-zero m_{ν} is not included in SM

- Best-known description of fundamental particles and their interactions (except gravity)
- Neutrino oscillations suggest $m_{\nu} > 0$
- Non-zero m_{ν} is not included in SM

SM Extension with 3 HNLs

 Introduce right-handed sterile neutrino states or heavy neutral leptons (HNL)

Motivation for HNLs

1. Origin of neutrino masses •Type-I seesaw mechanism: $m_{\nu} \simeq \frac{v^2}{2} Y m_N^{-1} Y^T$

Motivation for HNLs

1. Origin of neutrino masses •Type-I seesaw mechanism: $m_{\nu} \simeq \frac{v^2}{2} Y m_N^{-1} Y^T$

2. Matter-antimatter asymmetry of the universe

 Increase in charge-parity violation as a result of neutrino oscillations in the early universe

CAP Thesis Prize Talk – June 6 2022

7

Motivation for HNLs

1. Origin of neutrino masses

•Type-I seesaw mechanism: $m_{\nu} \simeq \frac{v^2}{2} Y m_N^{-1} Y^T$

2. Matter-antimatter asymmetry of the universe Increase in charge-parity violation as a result of neutrino oscillations in the early universe

3. Dark matter candidate Models with at least three HNLs can

incorporate a keV-scale sterile neutrino

CAP Thesis Prize Talk — June 6 2022

Experimentally Relevant Observables

Relevant Observables:

 $|U_{\alpha}|^2$ Mixing angle between SM neutrino and HNL

 m_N HNL mass

 HNLs experience "weak-like" interactions controlled by dimensionless mixing angles ($|U_{\alpha}|^2$)

 $\bullet m_N$ dictates kinematics of decay products $\tau_N \propto \frac{1}{m_N^5 \left| U_\alpha \right|^2}$ •HNL lifetime: $c\tau_N = 1 \text{ mm}$ 10^{-} $c\tau_N = 10 \text{ mm}$ $\Sigma_{I, \alpha} |\Theta_{I, \alpha}|^2$ $c\tau_N = 100 \text{ mm}$ Can lead to 10^{-4} interesting 10^{-5} experimental 10^{-6} signatures from 10^{-7} tong-lived 10^{-8} HNLs! 10^{-9} 12.5 15.0 10.0 2.5 5.0 7.5 17.5 m_N [GeV]

Experimental Picture

Object Reconstruction Standard:

(Constrained to originate from primary collision vertex)

1.Muons (μ): ID track + MS track 2.Electrons (e): ID track + ECal deposit 3. Neutrinos (ν): invisible to the detector

12

Object Reconstruction Standard:

(Constrained to originate from primary collision vertex)

1.**Muons** (μ): ID track + MS track 2. Electrons (e): ID track + ECal deposit 3. Neutrinos (ν): invisible to the detector

4. Displaced Vertex (DV): Common origin point for ≥ 2 tracks that is displaced with respect to PV Requires special displaced track reconstruction

CAP Thesis Prize Talk — June 6 2022

Displaced Track Reconstruction

Displaced Heavy Neutral Leptons

Experimental HNL Signature:

Prompt lepton (used for trigger) DV with 2 opposite charge leptons

15

HNL Mixing Scenarios

Mixing scenario benchmarks:

•<u>Simple model</u>: One HNL with single-flavour mixing (1SFH) Muon-only mixing $(|U_{\mu}|^2)$ More data! Electron-only mixing $(|U_{e}|^{2})$ New! •<u>Realistic scenario:</u> Two quasi-degenerate HNLs with $m_1 \sim m_2$ (2QDH) Inverted hierarchy (IH) mixing ($|U|^2$) Normal hierarchy (NH) mixing ($|U|^2$) New!

$$|U|^{2} = \sum_{\alpha = \mu, e, \tau} |U_{\alpha}|^{2}$$

$$x_{\alpha} = |U_{\alpha}|^2 / |U$$

Discriminating Variable: HNL mass

- Energy-momentum conservation is used to reconstruct the HNL mass (m_{HNL})
- Uses kinematics of charged leptons, W mass and the flight direction of the HNL tc completely constrain the neutrino momentum

Main Backgrounds

• Five main backgrounds that produce **opposite-charge DV** + **prompt lepton**:

Non-random Backgrounds

- Dedicated selections to remove non-random backgrounds:
 - 1. Material veto for *ee* DVs
 - 2.DV mass $(m_{\rm DV})$ and radius $(r_{\rm DV})$ cuts to remove metastable decays
 - 3. Veto cosmic muons with track separation cut (no back-to-back tracks)
 - 4.Z mass veto for same flavour opposite charge pairs

Main Backgrounds

• Five main backgrounds that produce **opposite-charge DV** + **prompt lepton**:

Random Background

Background Validation

- tracks

Background Estimate

•This method increases the available statistics (~x2,000) and creates a smooth distribution as a function of m_{HNL}

Fit Model

•Global fit for the signal strength, background yields and nuisance parameters is performed

Results

•Fit results are consistent with **no significant excesses** in any of the six channels **No new physics!**

 Limits span a challenging long-lived region of phase space Interpretations assuming various mixing scenarios provide constraints for theoretical predictions

Dominique Trischuk

CAP Thesis Prize Talk — June 6 2022

Future of Long-Lived Particle Searches

 Exciting prospects for next LHC data taking period (Run 3) Optimization of large radius tracking (LRT)

Lots of room for improvements in long-lived particle (LLP) searches with displaced tracks

Future of Long-Lived Particle Searches

Summary

Displaced Vertex Search for Heavy Neutral Leptons

•No new physics Brand new results for electron-only and multi-flavour mixing scenarios Improved limits in muon-only mixing scenarios

Acknowledgements — Thank you!

THE UNIVERSITY **OF BRITISH COLUMBIA**

CAP Thesis Prize Award Sponsors:

Canadian Association of Physicists Particle Physics Division

HNL Production and Decay

(a) Charged current decay $(\alpha - \beta \gamma)$

(b) Neutral current decay $(\alpha - \gamma \gamma)$

31

HNL Decays

- Depending on the nature of the HNL, lepton number violating decays are possible
- ATLAS search considers both:
 - "Dirac-limit": 100% LNC
 - "Majorana-limit" 50% LNC / 50% LNV

Limits are provided for both scenarios.

CAP Thesis Prize Talk — June 6 2022

Analysis Selections

Level	Selection
Pre-selection	Event cleaning
	Trigger
	Trigger matched lepton
	Primary Vertex
	DRAW Filter
	Prompt lepton quality
	Prompt lepton impact parameters
	Trigger matched lepton
	Cosmic veto
	Displaced lepton-only vertex
	Number of tracks in DV
	Fiducial volume
SR selection	DV charge
	Prompt+ disp. <i>l</i> charge
	DV type
	Displaced lepton quality
	Material veto
	B-hadron veto
	Z mass veto
	Tri-lepton mass
	HNL mass

33

Long-Lived Non-Standard Reconstructive Standard

Custom Lepton-Only Vertexing

Metastable Particle Decays

Metastable particle veto: • DV mass and radius selections used to remove OS backgrounds • DV Mass Cut (e- $\mu\mu$ and μ - $\mu\mu$) : $m_{\rm DV} > 5.5~{\rm GeV}$ Study data events in validation region (VR) • Diagonal Cut (e-e μ , μ - μ e, e-ee and μ -ee): Metastable Particle Decay • $m_{\rm DV} > 5.5 \,{\rm GeV}$, if $r_{\rm DV} < 32 \,{\rm mm}$ + prompt leptor Regain sensitivity to low DV mass HNLs using DV mass and radius cut $m_{\rm DV} > -\frac{7 \,\text{GeV}}{150 \,\text{mm}}r_{\rm DV} + 7 \,\text{GeV}, \text{ if } 32 \,\text{mm} < r_{\rm DV} < 107 \,\text{mm}$ Selection is sufficient to remove $J/\psi \rightarrow \mu\mu$ decays, so a flat DV mass only cut is used. • $m_{\rm DV} > 2 \,{\rm GeV}$, if $r_{\rm DV} > 107 \,{\rm mm}$

Displaced Vertex Systematic

Uncertainty Source	Maximum Selection Efficiency U				
Channel	$\mu - \mu \mu$	$\mu - \mu e$	µ–ee	e-ee	
Integrated luminosity	2				
Pileup				3	
Filter discrepancy	3			3	
Tracking		3			
Displaced vertexing	11	21	19	20	
Lepton d_0 extrapolation	5	7	7	7	
Trigger efficiency	< 1	1	< 1	< 1	
Lepton reconstruction and identification	4	9	12	17	
W cross section and modeling		3			
HNL branching fractions and decay	5				
Total	8 - 33				

- Largest contribution to the signal efficiency uncertainty is due to the reconstruction of displaced vertices
- •This uncertainty is evaluated with $K_s^0 \rightarrow \pi^+\pi^$ decays selected in **dijet simulations** and **data** in the validation region with zero prompt leptons
- The vertexing uncertainty is parametrized as a function of p_T and r_{DV}

Cross Section Systematics

Uncertainty Source	Maximum Selection Efficiency U				
Channel	$\mu - \mu \mu$	$\mu - \mu e$	µ–ee	e-ee	
Integrated luminosity		2			
Pileup	3)		
Filter discrepancy		3			
Tracking		3			
Displaced vertexing	11	21	19	20	
Lepton d_0 extrapolation	5	7	7	7	
Trigger efficiency	< 1	1	< 1	< 1	
Lepton reconstruction and identification	4	9	12	17	
W cross section and modeling	3				
HNL branching fractions and decay	5				
Total	8 - 33				

Cross section uncertainties:

- W cross section uncertainty is taken from ATLAS measurement of σ(pp → W) · BR(W → l_αν)
 This 3% is also sufficient to cover and systematic from the W p_T modelling
- The uncertainty on the HNL branching ratio calculations are conservatively estimated by taking into account perturbative QCD corrections

HNL cross section:

$$\sigma_{N} = \sigma(pp \to W) \cdot BR(W \to l_{\alpha}v) \cdot x_{\alpha} \cdot |\Theta_{\text{tot}}|^{2} \cdot \left(1 - \frac{m_{N}^{2}}{m_{W}^{2}}\right)^{2} \left(1 + \frac{m_{N}^{2}}{2m_{W}^{2}}\right) \cdot BR(N \to l_{\beta}v)$$

$$3\%$$
(experiment)
(1)

Other Signal Systematics

Uncertainty Source	Maximum Selection Efficiency U			
Channel	$\mu - \mu \mu$	$\mu - \mu e$	µ–ee	e-ee
Integrated luminosity		2		2
Pileup	3			
Filter discrepancy	3			
Tracking	3			
Displaced vertexing	11	21	19	20
Lepton d_0 extrapolation	5	7	7	7
Trigger efficiency	< 1	1	< 1	< 1
Lepton reconstruction and identification	4	9	12	17
W cross section and modeling	3			
HNL branching fractions and decay	5			
Total	8 - 33			

- Standard luminosity, pile-up uncertainties
- Filter discrepancy accounts for the difference between the objects selected in data and MC due to an event filter use to run displaced tracking
- Track reconstruction uncertainty is calculated with a central tool that randomly removes tracks with a probability parameterized in p_T and η
- Displaced lepton d₀ extrapolation accounts for the differences in lepton identification between data and MC when the leptons have a large d₀
- Standard lepton calibration, identification, reconstruction and trigger uncertainties

Fit Model

• A global fit for the signal strength ($\hat{\mu}$) performed using a profile likelihood (\mathscr{L})

•Fit model inputs:

- 1. Event yields from **data events** (OS DVs)
- 2. Event yields from **simulated signal samples**
- 3. Event yields from shuffled background model ► free-floating normalization (6 separate factors; one for each channel)

•Systematic uncertainties are included as nuisance parameters (θ)

Inclusion of the control region (CR) in the fit directly constrains the predicted number of background events in the SR

$$\mathscr{L}(n \mid \mu, \mu_b, \overrightarrow{\theta}) = \prod_{i \in \text{bins}} P\left(n_i \left(\mu S(\overrightarrow{\theta}) + \mu_b B(\overrightarrow{\theta})\right) \cdot \prod_{j \in \text{NP}} P\left(n_i \left(\mu S(\overrightarrow{\theta}) + \mu_b B(\overrightarrow{\theta})\right)\right) \right)$$

 $G(\theta_i)$

systematics

Highlight of Changes to LRT in Run 3

The earlier the cuts can be applied, the less CPU time is wasted processing fake tracks in later steps

> **Space Point** Formation

Seed Finding

Only SCT is used for seeding as opposed to SCT or Pixel seeds

> Changes in the seed ranking decides the order in which tracks are processed

Tightening of cuts which are applied at several stages of track reconstruction

See ATL-PHYS-PUB-2021-012 for more details!

3-space-point seeds must be confirmed by a fourth

CPU dominated by *track finding* and *ambiguity resolution* steps

Credit: R. Newhouse

LRT in Run 3

