

THE UNIVERSITY of EDINBURGH School of Physics and Astronomy

Characterization of Laser-Driven Photon Emission in Silicon Photomultipliers

Juliette M.J. Martin TRIUMF, The University of Edinburgh CAP Congress June 8th, 2022

Discovery, accelerated

Outline

- The Silicon Photomultiplier
- Cross-Talk
- Optical cross-talk studies at TRIUMF
- Results

2

What is a Silicon Photomultiplier (SiPM)?

- Solid-state detector
 - PMT alternative
 - Single photon resolution
 - Good photon detection efficiency
- Basic unit: single photon avalanche diode (SPAD)
- p-n junction biased above breakdown
 - Overvoltage: $V_{ov} = V V_{bd}$
 - Avalanche process: gain is 10⁵-10⁷

SiPM signal detection: SPAD level

Cross-Talk

- Secondary photon by-product of avalanche mechanism
- Systematic effect on detector background
- Must be quantified for use in rare-event searches (e.g. nEXO)
- Is photon emission significant?

MIEL at TRIUMF

- SiPM Microscope for Injection and Emission of Light.
- Setup developed at TRIUMF
 - Study spectral features of SiPM emission
 - Geographical location of light emission
- Two SiPMs: FBK VUV-HD3.6, HPK VUV4
 - nEXO candidate photodetectors

MIEL at TRIUMF

- Previous studies explore emission of SiPM in dark conditions
- Additions:
 - Cryogenic cooling: reduce dark noise, replicate conditions in cryo experiments (nEXO etc)
 - Laser injection system: stimulate emission of secondary photons at variety of wavelengths

MIEL laser injection system

HPK and FBK photosensors

Parameter	FBK VUV-HD3	HPK VUV4
Total Area	$6 \times 6 \mathrm{mm^2}$	$3 \times 3 \mathrm{mm^2}$
SiPM Fill Factor	80%	60%
SPAD pitch	$35 imes 35 \mu \mathrm{m}^2$	$50 \times 50 \mu \mathrm{m}^2$
Breakdown Voltage [298 K]	31 ± 1 V	$52\pm1V$

Laser beam positioning: FBK

- Laser: 444nm wavelength
- Centre beam on SPAD
- Close slit over SiPM for spectra
- Open for emission maps.

Emission Microscopy Images: FBK

- Polysilicon trenches in FBK – less photon absorbance
- Reflection
- "Light guiding" effect observed

Emission Microscopy Images: HPK

- HPK has tungsten trench
- Photon absorption
- No distinct 'cross' pattern

Spectra: FBK

- Raw spectrum
- Uncorrected for system efficiency
- Rudimentary cosmic removal
- 550nm longpass filter
- Evidence of thin-film interference due to SiO₂ coating.

Spectra: HPK

- Raw spectrum
- Uncorrected for system efficiency
- Rudimentary cosmic removal
- 550nm longpass filter
- Fewer oscillation than FBK – thinner coating.

Summary

- Stimulated two SiPM with 444nm laser
- Obtained raw spectral distributions
- Emission maps reflect differences in structure between SiPMs

Ongoing and future work

- More effective cosmic removal
- Error analysis

D. Minchenko, 8th June, 16:15 in MDCL 1110

- Active simulation efforts to model photon transport in SiPM
- Correct spectra for system efficiency intensity calibration
- Correct for finite numerical aperture simulation
- Is the level of photon emission a problem for future experiments?
- Stay tuned!

Acknowledgements

Supervisor: F. Retière
K. Raymond (SFU, TRIUMF)
PHAAR group at TRIUMF

School of Physics and Astronomy

Thank you! Merci!

Contact juliettem@triumf.ca

> Discovery, accelerated

Efficiency curve

- Calibrate spectrometer using PI IntelliCal ® source.
- Wavelength and intensity calibrations computed.
- Spectra produced treated with efficiency curve
- Rudimentary error analysis, potential wavelength miscalibration

