Teaching quantum computing
through quantum software

Olivia Di Matteo
CAP Congress, 8 June 2022

C
vr)
(@)

THE UNIVERSITY OF BRITISH COLUMBIA

|

Electrical and Computer Engineering
Faculty of Applied Science

Quantum computing education

Traditionally, qguantum computing courses have:

e Targeted primarily graduate students (often physicists)
e Focused mostly on the underlying theory
e Not actually taught how to program a quantum computer

r =
Quantum
Computation
and Quantum
Information

MICHAEL A NIELSEN
and ISAAC L. CHUANG

Image credits: https://residency.xanadu.ai/, https://pennylane.ai/gml/whatisgml.html

https://residency.xanadu.ai/
https://pennylane.ai/qml/whatisqml.html

Quantum computing education

The QC industry is growing. We
need more courses that;:

e Target undergraduates
e Target non-physicists

e Focus on actually writing
software and algorithms for
quantum computers, using
industry-relevant tools

Image credit: https://pennylane.ai/aml/whatisgml.html

99999

https://pennylane.ai/qml/whatisqml.html

Teaching quantum computing through quantum software

Overview of CPEN 400Q: Gate-model quantum computing
e Course content
e <4 Teachingdemo +
e Assessment

e Exploring background-specific content design

CPEN 400Q

e ECE department at
UBC, Jan-Apr 2022

e First dedicated
undergraduate
guantum computing
course at UBC

Undergraduate Majors

M Computer Engineering

M Electrical Engineering
Integrated Engineering

® Engineering Physics

W Computer Science / Physics

e 3lundergrads,and]
physics grad student

e First month on Zoom,
then (mostly) in-person

Slides & demos available open source: https://github.com/glassnotes/CPEN-400Q

CPEN 400Q

Course learning outcomes

Core goal: learn how to program quantum computers in a
hands-on, software-focused setting.

m Describe the societal importance and implications of quantum
computing

m Explain the theory and principles behind gate-model quantum
computing

m Describe the operation of key quantum algorithms

m Implement basic and research-level quantum algorithms using
Python and PennylLane

In this course you will implement everything you learn!

Slides & demos available open source: https://github.com/glassnotes/CPEN-400Q

Content: define and compute basic concepts

e Write quantum states, compute >
action of gates and results of
measurements

e Define superposition and
entanglement

e Describe which algorithms give
guantum speedups and which don’t

e EXpress quantum computationsin
the quantum circuit model

e Describe the operation and structure
of key quantum algorithmes...

Content: implement core algorithms in software

e Quantum teleportation '1?7 y
e Deutsch’s algorithm :3—
e Grover’s search algorithm 16y ——
e Quantum Fourier transform 1[3~
H—1.
e Quantum phase estimation i
e Shor’s algorithm Ie?
e Variational quantum classifier
e Variational quantum eigensolver ::3__{?‘ Dﬁ"ﬁ‘ g i
: . : loy——4 05 A
e Quantum approximate optimization algorithm © L 5 — J

e Basic Hamiltonian simulation
mkn (HY = min (o) Uf(é) HU(8) I —E4
¢ Y]

Content: teaching methods

e Half annotation of slides
on iPad, half live coding

e [ots of pictures

e Tried to leverage concepts
and algorithms they were

- : ~——{@)
familiar with before — A ¢ loss A
showing analogous TRAINABLE [Tzl ?
< ° LAYEKS | - o N,
quantum algorithms p class B
J_@

Content: the first weeks

Students did not know
quantum mechanics, but they
did know how to program

Manually programmed the
components of simple
gquantum computation before
jumping to quantum software

All coding afterwards was
using PennyLane

Demo 3: measurement

def measure(state, shots=50):
prob 0 = np.abs(state[0]) ** 2
prob 0 = state[0] * state[@].conj()
prob 1 = np.abs(np.vdot(ket 1(), state)) ** 2

return np.random.choice([0, 1], size=shots, p=[prob 0, prob 1])
some_state = apply multiple U([H, Z, X], ket 0())

measure(some state, shots=20)
array(f1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1])
def quantum algorithm():

state = superposition(1j/2, np.sqrt(3)/2)

state = apply multiple U([Z, H, X, H, X, H], state)
return measure(state)

quantum_algorithm()

array([1, ©, ©, 6, 0, 0, 0, 1, 1, 6, 1, ©, 1, 1, 0, 1, 1, 0, 1, 1, 0
1, 1, 0, 0, , 1, 8, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1
e, 1, 0, 0, 0, 1])

’

’

’

Content: the first weeks

PennylLane is an open-source
guantum software framework;
development led by startup
Xanadu in Toronto

Write and run quantum circuits
just like Python functions!

Teaching/learning through
software allowed students to
apply a familiar language and
tools to new concepts

Demo 2: basis rotation

dev = gml.device('default.qubit', wires=1, shots=20)

def basis rotation():
gml.Hadamard(wires=0)
gml.S(wires=0)

@gml.qgnode(dev)

def circuit(x, y, z):
gml.RX(x, wires=0)
gml.RY(y, wires=0)
gml.RZ(z, wires=0)

Rotate back to computational basis
gml.adjoint(basis rotation) ()

return gml.sample()

circuit(e.1, 0.2, 6.3)

Content: the first weeks

Teleportation is a great quantum algorithm with which to end the first
few weeks:

state preparation
[¥) 7 /L H — 1 A
S D D S~
entanglement two-qubit gates

(controlled operations)

Access to guantum software helps us express this in terms of smaller
algorithmic building blocks that can be combined and reused.

Image credits: https://codebook.xanadu.ai/l.15

https://codebook.xanadu.ai/I.15

Hands-on demo: quantum teleportation

To code along go to:

https://bit.ly/38PVFwO

Assessment

Three components for grading:

e Computational assignments (30%)
e Weekly quizzes (20%)
e Final project (50%)

(No exams!)

Assessment: assignments

e Consisted of solving programming problems
e Distributed and submitted through GitHub
e Grading scripts with test cases were usually provided

e Points for comments, formatting, and source/collaborator citation

Issues:

e Convoluted submission instructions

e Tricky to balance autograding and manual providing of feedback

e Tried to sneak in extra concepts: some liked this, some didn't.

Next time: GitHub classroom?

Assessment: quizzes

e Distributed and submitted
through GitHub

e Individual, but can consult
documentation and notes

e 4 hourtime window to
complete

... this didn’t really work. Setup too
convoluted for such a short time
window.

Next time: in-class quizzes in pairs.

import pennylane as gml

def quiz_1(x, y):
"""write and execute a QNode that implements the following circuit:

O el C---|
1: --RX(x)---|C---]
2t --RY(y)---X---] (X)
Args:
x (float): Angular parameter for X rotation
y (float): Angular parameter for Y rotation.

Returns:
float: The analytical expectation value of X on the final qubit

obtained after executing your QNode.

YOUR CODE HERE

return

Assessment: final project

Replicate the results of a recent research paper in software.

Three (equally-weighted) components:
e Software implementation
e Class presentation (on Zoom) + live coding demo

e Companion report detailed their process and issues
Very challenging, but they did really well!

Next time: more checkpoints; permute order of course content...

The textbook

Xanadu Quantum Codebook:

Free, self-paced, and hands-on
resource that teaches quantum
computing

Target audience is software
developers who know Python,
and a little bit of linear algebra

Readers learn by doing by

solving programming exercises.

(codebook .xanadu.ai)

1.10 What did you

expect?

Codercise 1.10.1. Design and run a PennyLane circuit that performs the
following, where (Y') indicates measurement of the PauliY observable.

—

H

Z

A

|0) R (7/4)
1 dev = gml.device('default.qubit',
2
3 (@gml.gnode(dev)
4 v def circuit():
5 HHERHRA R BH AR B
6 # YOUR CODE HERE #
7 HHARHBHAHBH AR BHAHY
8
9
10
11 return

13 print(circuit())

wires=1)

{Y)

IMPLEMENT THE CIRCUIT IN THE PICTURE AND MEASURE PAULI Y

The textbook

()
H.3 Hamiltonians

We've lumped some of the CONStants INto a = e/ Zm, Tor convenience. 1he Z operator has eigenvalue +1
when the magnet is aligned, and —1 when anti-aligned, so the energy is indeed lower in the first case:

Z=+1 Z=-1
Graph to ® B

To get the unitary according to (1), we must exponentiate (2), which is simply a Z rotation:

. i
navigate__— gt
\ = cos(at) - I +isin(at) - Z ®

(Ha) _ [cos(at) + isin(at) 0

0 cos(at) — isin(at)

content

Codercise H.3.1. (a) Complete the code to build the unitary (3). We can verify the output is unitary using
unitary_check.

1+ def mag_z_unitary(B, time):
2 """Creates a unitary operator to evolve the state of an electron in

£ 3 a magnetic field.
\ 4
(H-G) 5~ Args:
N 6 B (float): The strength of the field, assumed to point in the z direction.
7 time (float): The time (t) we evolve the electron state for.
8
~ 9+ Returns:
[/H?‘ 10 array[complex]: The unitary matrix implementing time evolution.
7) o ’
N 12 e = 1.6e-19
13 n_e = 9.1e-31
1 alpha = Bre/(2*n_e)
15 prns———

0/6 Complete

(codebook.xanadu.ai)

H.3 Hamiltonians

— LU e\ T T Sk (e | T & U e) s g\ TS T/

= cos’(at) — sin’(at)

= cos(2at).
Similar manipulations show (Y) = sin(2at) and {Z) = 0, with the angle changing at a rate 2a. A stronger
field won't align the spin any better, but it will rotate the spin vector faster! This is called Larmor

precession:

N~ A~
1
1
1
& i
<) £
1
\ \ '
\ \ \

In general, the spin vector S of the electron will simply rotate around the z-axis with angular velocity
Be/m,, as you can check in the next exercise. It may seem odd that the magnetic field doesn't push the
spin into alignment, but it turns out that in quantum as in classical physics, a uniform magnetic field
cannot cause tiny magnets to align. Iron filings only arrange themselves along field lines because the
strength of the field at the top and bottom of the filing is different!

Exercise H.3.2. Suppose that [1/(0)) has expectations
((X)0, ()0, (Z)0) = (=¥, 2).
Show that |¢(t)) = U(t)[¥(0)) has expectations
((X)ey (Y)t, (Z)1) = (cos(2at)a + sin(2at)y, — sin(2at)z + cos(2at)y, z),

where for an operator O, (O); = (¥(t)|O[(t)). This means a qubit starting in any state will simply precess
clockwise around the z-axis with angular rate of chalge 2a.

» Solution.

We now have a nice simple example where the unitary pvolution is connected to the physics. Time to
consider something more interesting!

I
Autograded coding exercises

Companion textbook content

Ordering the material

Codebook content is divided into modules in a non-linear way: choose
a path based on your own interests and background.

Tutorial

Hamiltonian simulation

Ordering the material

Tutorial

Hamiltonian simulation

\ 4 ____/

Physics-focused background CS-focused background

Ordering the material: CPEN 400Q

Tutorial

Hamiltonian simulation

vl (Jan 2022)

\ /

Variational Algorithms
VQC => VQE => QAOA

Ordering the material: CPEN 400Q

v2? (Jan 2023) v2? (Jan 2023) v2? (Jan 2023)

Vari at|onal Algorithms

Variational Algorithms
VQC => VQE => QAOA

vQC

Variational Algorithms
VvQC

Variational Algorithms ariational Algorithms
VQE => QAOA VQE => QAOA

23

How to learn which order works the best?

e All students are different Y% 2% v2r llan 2023) v2? (an 2023)

e Varying class
composition but still
mostly CPEN students

e Small class size

e Long time horizon

ariational Algorithms
VQE => QAOA

Other content questions:

e What is the right amount of guantum mechanics to teach?
e When to introduce Hamiltonians?

e When/how to facilitate a discussion about ethics? o

Takeaways

e Students /ove live coding (even if you make mistakes!)

e Autograded quizzes/assignments are powerful tools but
must be wielded wisely

e The order of material must be chosen to suit student
backgrounds, but not clear what is the best way to choose it

D © Ry s,

Thanks & acknowledgments

e Tomy TA, Gideon Uchehara, for reviewing lectures, testing
assignments, and helping out the students

e To the Xanadu team, for providing computing resources for
in-class demos, and for fostering a work environment that
enabled development of the Codebook

e To all the CPEN 400Q students for their patience and their
valuable feedback!

26

