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Einstein’s General Relativity works well
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Suppose it didn’t.
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Treat gravity as an EFT below Mhigher-spin (<< Mpi)
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How large can g’s be ?

= causality of graviton scattering will require:
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Outline

1. The question: What modifications can we bound?
- Graviton scattering
- causality+unitarity

2. The method
- dispersive sum rules
- scalar effective theories
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Low energy graviton scattering in 3+1D
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We don’t bound:

* J(R)
* Any term with Ricci tensor/scalar: removable by field redefinition

e Scalar potentials

* ‘Fifth forces’, torsion, etc: treat as extra matter fields

Briefly, we bound amplitudes, not Lagrangians.



Causality 'signals can't travel faster than light"

 Why waves, fields measured
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Causality 'signals can't travel faster than light"

 Why waves, fields measured

force

 Why particles | T
time
 Why antiparticles

 Why EFTs have to work g\
 Why gravity is attractive

 Experimentally tested to exquisite accuracy

(doesn’t imply it's exact in Nature!)



Causality vs. gravity: some known results

0) at long distances, any Lorentz-invariant S-matrix of a massless spin-2
particle must reproduce GR

1) Positivity of classical time delays at impact parameters b, > 1/ My;pc0 i
requires

831 S
Mflligher—spin

2) positivity of forward amplitudes (imaginary parts) implies various sign constraints

* ds
g4=J — Im f(s,t=0) >0
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Method

Dispersion relations



Causality for 2->2 scattering

) Fixed angle scattering can show time advances
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= causality controls Regge |limit ¢ or b fixed




Causality for 2->2 scattering

) Fixed angle scattering can show time advances

| . .. 5> 00
= causality controls Regge limit ¢ or b fixed

) Strongest statement involves crossing:

particle 1| — 3 ~ antiparticle 3 — 1




Particles are waves. What is causality for waves?

Wavefront not o Medium response is

superluminal analytic in frequency

Kramers-Kronig dispersion relations:

) absorption

propagation 1 ' 1 ,
\n(a)) 4 _J do’ Im(n(w’)
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Minimal axioms:

Miow(s,t) has a causal+unitary
(relativistic) UV completion

Dispersive sum rules: relate IR& UV

M
0 = 4; ds l//(S) N (F( ) = J Sk+1ImM (5) (k>1)

gk+1
5| =00 EFT heavy 1

Z ¢, |7 P,(1 = 2p°/s),, (Im M = sum of Legendre’s
with positive coefficients)

(low-energy couplings) = (sums of high-energy unknowns)



Minimal axioms:

) Analyticity of M(s,t) in {t € (—M?,0)} X {real s > M? U real u > M2}

U upper-half-plane connecting them

i) Boundedness | M, (s)/s| < constas |s| — o0
M

for smeared amplitude: M, (§) = M(s, — p? Y. compact support p<i/,
" (5) [0 WpIM(s, = p7) fast decay in b

holds for AdS gravity / large-N large-gap CFTs: [SCH,Mazac,Rastelli& Simmons-Duffin '21]



Warm-up: non-gravitational real scalar

- weakly coupled EFT below M
- anything above M, just causal and unitary
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Goal: bound higher-derivative terms



First few sum rules: (k=2, 4, ...)
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‘null constraints’ from
crossing symmetry
enable 2-sided bounds

[Tolley, Wang& Zhou ’'20]
[SCH& van Duong ’20]



‘dimensional analysis scaling’ is a theorem |for operators of dim=8]
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Gravity: new results
« Spin is GREAT »



* Dispersive sum rules for gravitons:

f(s, 1)

4
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* Prefactor grants superconvergent sum rules:

By(u) : 0 = {) (s = 0ds|f(s, 1) +f(t,5)], By(u):0= ﬂg ds| f(s,t) — f(t, 5)]

=00 =00

* Any MIAGIC combination which writes G = positive sum will dominate all else:

—M?
G = Z L du'¥ (u)B(u) > 0 => G —#g3 > 0, etc
k

-light particles of spin<=2 (SM, KK modes, etc)

* Require positive contributions from: -heavy states with M>Mhigher-spin Of arbitrary spin



Riem3 and Riem4 can't exceed GR

| J g, Riem’ g, Riem*
162G M M

higher—spin higher—spin
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g's can't exceed O(1)

without violating causality
at scale ~Mhigher—spin

gaM° /(87 G log(M /mig))



A tale of 3 effective field theorists: o°h>
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'c<O(1) since COUP””QS" "c'<O(1): corrections can never | "c"<0O(1) so gravitons stay
at cutoft should be O(1)" | gominate GR below the cutoff" weakly coupled below M'

When M<<mpi , what is the correct scaling of higher-derivative corrections with M & mp; ?



A tale of 3 effective field theorists:

L D X 1R+c

"c<O(1)Sincecouplings
at cutoff should\be O(1)"

too restrictive
(untrue in string theory...)

Riem?

M4

2 /
LD ms R+c

'c'<0O(1): corrections can never
dominate GR below the cutoff"

= what we find!
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"'c"<OfA) so grawtons stay
weaKly coupled below M*

too permissive
(ruled out by our causality bounds!)

When M<<mp , what is the correct scaling of higher-derivative corrections with M & mp; ?



Our results are insensitive to the large-scale curvature of spacetime:
one only needs a flat local patch of size >> 1/Mhigher-spin

In AdS spacetime, localized scattering -> rigorous bounds on CFT central charges:

23.0

2
Agap

ad—~«C

<

AdSs/CFT4

C



Summary

- Gravitational scattering below Mhigner-spin can't significantly differ from GR
without violating causality.

Open questions

* |nteractions between [higher-spin states| and Standard Model matter?

« Expect loops only O(N/Mgl). Check?

 Remove Log[IR]’s (dressing, ...)?
* Higher spacetime dimensions?v massive graviton(s)?

 What if M~Myi: how close to classical GR can 4d quantum gravity be?



What do we know about Mhigher—spin?

gluon g 2 gluon s
aSE6 M12M§1
~ M4M§1 graviton a, E3
or ~ M4M41
P
g

* \ery conservatively: hard to imagine not seeing ‘missing energy’ at LHC from
a gravitationally-coupled spin-4 particle with M<MeV.

« Corresponds to a length scale: M};glher_spin < 107 Pm...

 Phenomenological constraints should be analyzed carefully.



Comments on photon scattering:

M? M p?

FA4
SR M- T
charged fields M, ax10nsf Ma
~30
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charged fields

— 100

‘WCG upper bound on /5/g, not seen in dispersion relation bounds:

- true bounds at large g2 are much stronger (axions don't contribute to /)
- small negative g2 allowed: time delay from graviton swamps possible ~¢

possible advance from matter loop.



more on contact interactions using (more) spin>=4 null constraints: (two D4R+ )/R4

30— 1

Bosonic string
Heterotic string
Superstring

Spin two

M/ g

Rarita-Schwinger

Vector

Fermion

Scalar

geM* /g,

extremal slopes are only realiiE%I N @Pmopoulous Zhiboedov *21]
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null constraints
from IR crossing:

L - L

this constrains UV spectral density! (light-light-heavy couplings)
~ b2 [Tolley, Wang& Zhou ’20]

e m 1 [SCH& van Duong '20]
<—4—2> s <_4>
e m>M " i m>M

— As far as sum rules are concerned,
heavy states with large spin (large b) can’t couple strongly

(le. large black holes, long strings, etc, can never dominate sum rules)



