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Einstein’s General Relativity works well

Suppose it didn’t.

Size of corrections  ⇔ Mass  
 of new states

Mhigher−spin ?



Treat gravity as an EFT below Mhigher-spin (<< Mpl) 

How large can ’s be ?

 
        causality of graviton scattering will require:


                          ,       

g
⇒

|g3 | ≤
#

M4
higher−spin

0 < g4 ≤
#′￼

M6
higher−spin

, …

How small: [Guerrieri, Penedones& Vieira ‘21]

S =
1

16πG ∫ R+g3Riem3+g4Riem4 + …+matter



1. The question: What modifications can we bound? 
- Graviton scattering 
- causality+unitarity


2. The method 
- dispersive sum rules 
- scalar effective theories


3. Results 
- would colliders see it?

SCH, Mazac,Rastelli& Simmons-Duffin ‘20 
SCH& van Duong ’20 
SCH, Mazac,Rastelli& Simmons-Duffin ‘21 
SCH, Mazac,Rastelli& Simmons-Duffin ’21 
SCH, Li, Parra Martinez& Simmons-Duffin '22 
SCH, Li, Parra Martinez& Simmons-Duffin ’22

CFT 
Flat 
Flat 
CFT 
Flat 
Flat

On:

Outline

...

+ Arkani-Hamed, Bellazzini, Bern, Chiang, de Rham, Du, Henriksson, 
Huang, Huang, Kosmopou;os, McPeak, Rattazzi, Rivera, Rodina, 
Russo, Tolley, Vichi, Wang, Zhang, Zhiboedov, Zhou…



Low energy graviton scattering in 3+1D

Mhigher-spin<<Mpl : 
 neglect loops. [14]4⟨23⟩4 × 8πG [ 1

stu
+

|g3 |2 su
4t

+
|gs |2

−t
+g4 + g5t + …]ℳ+−−+ =

Einstein! Riem3 
at vertices

Riem2ϕ contacts: Riem4  
and derivatives

1++

3--

2--

4++

+…
++

++

++ ∼ 8πGg3[12]2[23]2[13]2



We don’t bound:
•      (  Einstein + scalar field : no imprint in graviton scattering)


• Any term with Ricci tensor/scalar: removable by field redefinition (no imprint)


• Scalar potentials (don’t grow with energy)


• ‘Fifth forces', torsion, etc: treat as extra matter fields (minimally coupled or not)

f(R) ≃

Briefly, we bound amplitudes, not Lagrangians.



Causality

• Why waves, fields

time

speed of

light

measured 
force

📱

"signals can't travel faster than light"
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Causality

• Why waves, fields


• Why particles


• Why antiparticles


• ...


• Why EFTs have to work


• Why gravity is attractive


• Experimentally tested to exquisite accuracy


• …

time

speed of

light

measured 
force

📱

"signals can't travel faster than light"

(doesn’t imply it’s exact in Nature!)



Causality vs. gravity:  some known results

0) at long distances, any Lorentz-invariant S-matrix of a massless spin-2 
particle must reproduce GR [Weinberg]

1) positivity of classical time delays at impact parameters 

requires

bmin ≫ 1/Mhigher−spin

[Camanho,Edelstein,Maldacena& Zhiboedov ’14]
|g3 | ≲

1
M4

higher−spin

2) positivity of forward amplitudes (imaginary parts) implies various sign constraints
[Adams,Arkani-Hamed,Dubovsky,Nicolis&Rattazzi ’06]

[Bellazzini,Cheung& Remmen ’15]g4 = ∫
∞

M2
heavy

ds
s

Im f(s, t = 0) ≥ 0



Method
Dispersion relations



2-72 scattering
comments :

i) fixed angle scattering can Show timeadvances
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Causality for 2->2 scattering

i)  Fixed angle scattering can show time advances


        causality controls Regge limit
⇒

[Giddings+Porto ’09]

s → ∞
t or b fixed
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        causality controls Regge limit


ii) Strongest statement involves crossing: 
 
            

⇒

particle 1 → 3 ≃ antiparticle 3 → 1

[Giddings+Porto ’09]

s → ∞
t or b fixed



Particles are waves.  What is causality for waves?

[Brillouin-Sommerfeld]Wavefront not 
superluminal ⇔ Medium response is 

analytic in frequency
& sub-exponential in 
 upper half-plane

Kramers-Kronig dispersion relations:

n(ω) = 1 +
1
π ∫

dω′￼ Im(n(ω′￼))
ω′￼− ω − i0

propagation absorption

For us: low-energy 
scattering ⇔ production of heavy particles



Dispersive sum rules: relate IR& UV
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0 = ∮
|s|=∞

ds
Mψ(s)
sk+1

⇒ (k > 1)∮
EFT

(⋯) = ∫
heavy

ds
sk+1

ImMψ(s)

=

(low-energy couplings) = (sums of high-energy unknowns)

∑
J

|cJ |2 PJ(1 − 2p2/s)ψ (Im M = sum of Legendre’s 
with positive coefficients)

Minimal axioms:


Mlow(s,t) has a causal+unitary 
(relativistic) UV completion
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i) Analyticity of M(s,t) in {t ∈ (−M2,0)} × {real s > M2 ∪ real u > M2}∪ upper-half-plane connecting them

ii) Boundedness   |Mψ(s)/s | ≤ const as  |s | → ∞

for smeared amplitude: Mψ(s) = ∫
M

0
ψ(p)M(s, − p2) : compact support p<M, 

     fast decay in b
ψ

holds for AdS gravity / large-N large-gap CFTs: [SCH,Mazac,Rastelli& Simmons-Duffin ’21]

Minimal axioms:



Warm-up: non-gravitational real scalar

- weakly coupled EFT below M

- anything above M, just causal and unitary 

4

31

2

M

R

Figure 1: The 2 ! 2 scattering process studied in this paper. For di↵erent choices of
four-momenta, time can flow either horizontally or vertically (or diagonally).

The first line accounts for �3 and �4 relevant interactions, while the remaining terms sim-
ply list the most general symmetric polynomials in s, t, u, to account for higher-dimension
operators in the EFT. The subscript denotes the degree in Mandelstam invariants. Symmet-
ric polynomials are easy to enumerate since their ring is freely generated by two elements:
s
2 + t

2 + u2 and stu (given that s+ t+ u = 0).
A short exercise shows that the preceding amplitude is obtained from the following ef-

fective Lagrangian in the tree approximation:

Llow = �
1

2
(@µ�)

2
�

g

3!
�
3
�

�

4!
�
4

+
g2

2

⇥
(@µ�)

2
⇤2

+
g3

3
(@µ@⌫�)

2(@��)
2 + 4g4

⇥
(@µ@⌫�)

2
⇤2

+ · · ·

(2.4)

As is well known, Lagrangian densities are not unique: they are defined modulo integration-
by-parts and field redefinitions. One can cast any e↵ective Lagrangian for a real scalar field
into the form (2.4) by using field redefinitions to eliminate, order by order in the derivative
expansion, corrections to the kinetic and cubic terms as well as appearances of @2

�. See
for example [15] for a discussion in the Standard Model context. The amplitude (2.3) is a
physical observable una↵ected by such ambiguities, which is why we choose to parameterize
the coe�cients in terms of it.

Our goal is to constrain the EFT parameters gk assuming existence of an high-energy
completion which is causal and unitary, but not necessarily weakly coupled. Low-energy
interactions involving five or more powers of � will not be constrained by our methods, since
they are not detected by (tree-level) 2 ! 2 scattering. When low-energy loop corrections are
included, the detailed form of eq. (2.3) will be modified, but we do not expect the number of
independent EFT parameters that we can constrain to increase. A precise definition of the

– 4 –

the allowed space, including two kinks, can be understood from simple analytic scattering

amplitudes.

The relation between dimensional analysis scaling and causality resonates with many

previous studies, for example [8–12]. Our new observation will be the seemingly universal

existence of two-sided bounds.

This paper is organized as follows. In section 2 we review the general principles satisfied

by scattering amplitudes, introducing a family of “Bk” sum rules expressing EFT coe�cients

as averages over high-energy probabilities. In section 3, we provide a general numerical opti-

mization strategy to rule-out candidate EFTs by making use of the averaging technology. In

section 4, numerical results are presented along with remarks. Section 5 bridges the numerics

with the analytic results. We conclude in section 6 with a discussion about the potential

use cases of the numerical framework presented and the further implications of the numerical

results.

Note added: When this manuscript was being completed, the works [13] and then [14]

appeared with partial overlap in the results. The second paper in particular gave a two-sided

bound on the stu interaction which agrees with our eq. (3.6). Further comparisons will be

interesting.

2 Preliminaries: Scattering amplitudes and dispersion relations

2.1 Low energy: e↵ective field theory

We consider 2 ! 2 scattering of massless identical real scalars in a Poincaré invariant theory

(fig. 1). Treating all momenta as incoming, the amplitude is a function of Mandelstam

invariants:

s = �(p1 + p2)
2
, t = �(p2 + p3)

2
, u = �(p1 + p3)

2 (2.1)

which satisfy s+ t+u = 0. By crossing symmetry, it is invariant under all permutations (this

holds with appropriate i0’s in the discontinuity, as further discussed below):

M(s, t) = M(t, s) = M(s, u) = . . . (2.2)

Our first step is to parameterize the amplitude at low energies in terms of a specific e↵ective

field theory. Generally, the form of the amplitude depends on the couplings of the theory. It

becomes particularly simple if the theory is weakly coupled and we restrict ourselves to the

tree approximation. We thus use the tree approximation here and until subsection 2.4 In this

case, the amplitude has no low-energy branch-cuts, so the EFT expansion is simply a series

in small s, t, u:

Mlow(s, t) = � g
2


1

s
+

1

t
+

1

u

�
� �

+ g2(s
2 + t

2 + u
2) + g3(stu) + g4(s

2 + t
2 + u

2)2 + g5(s
2 + t

2 + u
2)(stu)

+ g6(s
2 + t

2 + u
2)3 + g

0
6(stu)

2 + g7(s
2 + t

2 + u
2)2(stu) + · · ·

(2.3)

– 3 –

+…

Goal:  bound higher-derivative terms



First few sum rules: (k=2, 4, …)Let us record the first few two instances explicitly:

B2 : 2g2 � g3t+ 8g4t
2 + . . . =

*�
2m2 + t

�
PJ

�
1 + 2t

m2

�

m2 (m2 + t)2

+
, (2.20)

B4 : 4g4 + . . . =

*�
2m2 + t

�
PJ

�
1 + 2t

m2

�

m4 (m2 + t)3

+
. (2.21)

The left-hand side has a regular series in t, and the right-hand side involves Gegenbauers

PJ(1 + 2t
m2 ), which can be straightforwardly expanded at small t ⌧ M

2 using eq. (2.7) .

Recall that averages are taken over heavy states with m � M . Matching both sides order by

order in t generates a linear system in gn’s:

g2 =

⌧
1

m4

�
, g3 =

*
3 �

4
d�2J

2

m6

+
, g4 =

⌧
1

2m8

�
,

g4 =

*
1 + 4�5d

2d(d�2)J
2 + 1

d(d�2)J
4

2m8

+
.

(2.22)

We introduced the spin Casimir J
2 = J(J + d � 3) for convenience. Note that we truncated

Mlow to order g4, but it is possible to work to higher orders and generate linear relations on

couplings such as g5 and so on.

The averaging notation immediately shows that g2, g4 > 0 since they are high-energy

averages of positive quantities 1
m4 and 1

2m8 , respectively. Furthermore, the inequalities g3 

3g2
M2 and g4 

g2
2M4 also follow readily since m � M inside the average. In contrast, the sign of

g3 is not immediate due to the presence of spinning particles – the magnitude of J
2 requires

a deeper investigation. This di�culty was noted in attempted proofs of the six-dimensional

a-theorem [25].

The key to calculating a lower bound for g3 will be the existence of two distinct averages

that output g4. Equating them yields the first example of what turns out to be an infinite

set of null constraints :

0 =
⌦
n4(m

2
, J)

↵
, n4(m

2
, J) ⌘

J
2
�
2J 2

� (5d � 4)
�

m8
. (2.23)

This is a constraint on the probabilities ⇢J(s) which define the average h·i. The subscript

indicates the degree in 1/m2. Physically this stems from crossing symmetry – since there is

a unique symmetric polynomial at degree 4, the coe�cients of s2t2 and s
4 must be related.

There are no lower-degree examples of this phenomenon: monomials with fewer than two

powers of s are killed by any double-subtracted sum rule, and odd powers of s are information-

free since fixed-t dispersion relations preserve the s $ �s � t symmetry of our problem.

Null constraints such as eq. (2.23) will be central to this work. They balance spin-two

states against higher spin states: as visible from fig. 5, the average vanishes for spin 0, is

negative for spin 2, and positive for all other spins. This implies that, as soon as one particle

– 10 –

m ≥ M

Expand around t=0  (requires stronger axioms)

3 Optimization framework

The Bk sum rules just introduced, coupled with positivity of high-energy averages h·i provide

a complete apparatus to establish potent self-consistency conditions on EFT coe�cients gk’s

(defined in eq. (2.3)). We recall our physical assumptions:

• Double-subtracted dispersion relations converge

• The low-energy amplitude is crossing symmetric

• The high-energy spectral density is positive

Since we are considering averages over heavy states (with m > M), the coe�cients (except

in subsection 3.5) are naturally normalized by g2 and the EFT cuto↵ M . We will therefore

be bounding dimensionless ratios:

g̃3 = g3
M

2

g2
, g̃4 = g4

M
4

g2
, g̃5 = g5

M
6

g2
, . . . (3.1)

Optimal bounds on these g̃k’s will be found by formulating a dual problem, in which we

combine the desired averages (such as 2.18) with null constraints (such as eq. (2.23)) to

obtain sign-definite sum rules. We first describe a simple example analytically, then describe a

systematic implementation as a semi-definite problem amenable to publicly available software

like SDPB [26].

3.1 Warm-up problem with three sum rules

As a warm-up, let us ask whether it is possible to lower-bound the g̃3 coe�cient using the

B2, B4 sum rules previously calculated. We consider the corresponding system of three equa-

tions from (2.22) (including the null constraint obtained via g4 data):

g2 =

⌧
1

m4

�
, g3 =

*
3 �

4
d�2J

2

m6

+
, 0 =

⌧
J

2(2J 2
� 5d+ 4)

m8

�
. (3.2)

With these definitions, let us examine a similar, but simpler set of relations:

h2 =

⌧
1

m4

�
, h3 =

⌧
a � J

2

m6

�
, 0 =

⌧
J

4
� bJ

2

m8

�
⌘

⌦
n(m2

, J)
↵
. (3.3)

These relations take on the same form as original identities when a = 3(d�2)
4 , b = 5d�4

2 and

the coupling is rescaled to g3 =
4

d�2h3. Consequently, our warm-up problem is to lower-bound

h3.

What makes a finite lower bound plausible is that the null constraint (the third equation)

should somehow prevent large spins from contributing too much. This is an important point:

the allowed range for g̃3 is restricted by higher derivative crossing equations!
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m2 ), which can be straightforwardly expanded at small t ⌧ M

2 using eq. (2.7) .
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We introduced the spin Casimir J
2 = J(J + d � 3) for convenience. Note that we truncated

Mlow to order g4, but it is possible to work to higher orders and generate linear relations on

couplings such as g5 and so on.

The averaging notation immediately shows that g2, g4 > 0 since they are high-energy

averages of positive quantities 1
m4 and 1

2m8 , respectively. Furthermore, the inequalities g3 

3g2
M2 and g4 

g2
2M4 also follow readily since m � M inside the average. In contrast, the sign of

g3 is not immediate due to the presence of spinning particles – the magnitude of J
2 requires

a deeper investigation. This di�culty was noted in attempted proofs of the six-dimensional

a-theorem [25].

The key to calculating a lower bound for g3 will be the existence of two distinct averages

that output g4. Equating them yields the first example of what turns out to be an infinite

set of null constraints :

0 =
⌦
n4(m

2
, J)

↵
, n4(m

2
, J) ⌘

J
2
�
2J 2

� (5d � 4)
�

m8
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This is a constraint on the probabilities ⇢J(s) which define the average h·i. The subscript

indicates the degree in 1/m2. Physically this stems from crossing symmetry – since there is

a unique symmetric polynomial at degree 4, the coe�cients of s2t2 and s
4 must be related.

There are no lower-degree examples of this phenomenon: monomials with fewer than two

powers of s are killed by any double-subtracted sum rule, and odd powers of s are information-

free since fixed-t dispersion relations preserve the s $ �s � t symmetry of our problem.

Null constraints such as eq. (2.23) will be central to this work. They balance spin-two

states against higher spin states: as visible from fig. 5, the average vanishes for spin 0, is

negative for spin 2, and positive for all other spins. This implies that, as soon as one particle
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clearly: g2 ≥ 0 ? ≤ g3 ≤
3g2

M2

m ≥ M

0 ≤ g4 ≤
g2

2M4

(t<0)

3 Optimization framework

The Bk sum rules just introduced, coupled with positivity of high-energy averages h·i provide

a complete apparatus to establish potent self-consistency conditions on EFT coe�cients gk’s

(defined in eq. (2.3)). We recall our physical assumptions:

• Double-subtracted dispersion relations converge

• The low-energy amplitude is crossing symmetric

• The high-energy spectral density is positive

Since we are considering averages over heavy states (with m > M), the coe�cients (except

in subsection 3.5) are naturally normalized by g2 and the EFT cuto↵ M . We will therefore

be bounding dimensionless ratios:

g̃3 = g3
M

2

g2
, g̃4 = g4

M
4

g2
, g̃5 = g5

M
6

g2
, . . . (3.1)

Optimal bounds on these g̃k’s will be found by formulating a dual problem, in which we

combine the desired averages (such as 2.18) with null constraints (such as eq. (2.23)) to

obtain sign-definite sum rules. We first describe a simple example analytically, then describe a

systematic implementation as a semi-definite problem amenable to publicly available software

like SDPB [26].

3.1 Warm-up problem with three sum rules

As a warm-up, let us ask whether it is possible to lower-bound the g̃3 coe�cient using the

B2, B4 sum rules previously calculated. We consider the corresponding system of three equa-

tions from (2.22) (including the null constraint obtained via g4 data):

g2 =

⌧
1

m4

�
, g3 =

*
3 �

4
d�2J

2

m6

+
, 0 =

⌧
J

2(2J 2
� 5d+ 4)

m8

�
. (3.2)

With these definitions, let us examine a similar, but simpler set of relations:

h2 =

⌧
1

m4

�
, h3 =

⌧
a � J

2

m6

�
, 0 =

⌧
J

4
� bJ

2

m8

�
⌘

⌦
n(m2

, J)
↵
. (3.3)

These relations take on the same form as original identities when a = 3(d�2)
4 , b = 5d�4

2 and

the coupling is rescaled to g3 =
4

d�2h3. Consequently, our warm-up problem is to lower-bound

h3.

What makes a finite lower bound plausible is that the null constraint (the third equation)

should somehow prevent large spins from contributing too much. This is an important point:

the allowed range for g̃3 is restricted by higher derivative crossing equations!
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‘null constraints’ from 
crossing symmetry 
enable 2-sided bounds

[Tolley, Wang& Zhou ’20]
[SCH& van Duong ’20]



EFT coe�cient Lower bound Upper bound

g̃3 -10.346 3

g̃4 0 0.5

g̃5 -4.096 2.5

g̃6 0 0.25

g̃
0
6 -12.83 3

g̃7 -1.548 1.75

g̃8 0 0.125

g̃
0
8 -10.03 4

g̃9 -0.524 1.125

g̃
0
9 -13.60 3

g̃10 0 0.0625

g̃
0
10 -6.32 3.75

Table 3: Bounds on coe�cients g̃(p)k = g
(p)
k M

2k�4
/g2 for d = 4 spacetime dimension, where

g
(p)
k refers to the coe�cient of (s2 + t

2 + u
2)

k�3(2p+�k,odd)

2 (stu)2p+�k,odd , which has degree k in

Mandelstam invariants and contains 2p powers of stu more than the minimum at that degree.

The upper bounds are all simple rational numbers realized by the Mspin-0 model. The values

(except for g̃3) were calculated at order n = 10, which corresponds to the number of null

constraints of dimN = 12.

B Bounds on operators up to order s10

In table 3 we record numerical bounds on various EFT coe�cients in four spacetime dimen-

sions.
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g̃k ≡ gkM#/g2
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Figure 8: The (g̃3, g̃4) allowed region. Numerics were performed at n = 10 Mandelstam

order and J = 0, 2, . . . , 40. One can see that g3 may take-on negative values, while g4 is

positive. Boundaries appear smooth except for two kinks at (�10.19, 0.5) and (3, 0.5).

region is then simply the convex hull of the allowed regions for these two problems:

Entire region = Convex Hull [Spin-0 + Spin-J � 2] . (4.5)

As may be seen from the form of the g3 sum rule (2.22), the two solutions are di↵erentiated

by the sign of g3: positive for Spin-0 and negative for Spin-J � 2.

In our implementation of the dual problem, theories with only J � 2 particles can be

studied by simply dropping the positivity constraint for the functional action on J = 0. The

allowed regions for the Spin-0 and Spin-J � 2 sub-problems are the narrow almond-shaped

regions shown in fig. 9.

The shape of these regions is largely explained by a simple scaling argument: given any

solution to crossing, scaling-up its overall mass scale will give a new solution. Starting from

any allowed point (g̃3, g̃4), this generates an allowed path (↵g̃3,↵2
g̃4) where 0  ↵  1. This

explains the parabolic shape of the “underbellies” in fig. 9. In fact the Spin-0 almond is simply

the convex hull of the parabola connecting (0, 0) to (3, 12). (This is qualitatively similar to

what is found in the forward limit [11, 13].)

The Spin-J � 2 region is more complicated – while it also displays a parabolic under-

belly near the origin, it fails to extend all the way to g̃4 = 1
2 . The boundary must thus

exhibit non-analytic behaviour at the end of the parabola, however we were unable to local-
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‘dimensional analysis scaling’ is a theorem [for operators of dim 8]≥

geometric growth like 
1

M2 − s
∼

1
M2

+
s

M4
+ …

[Chiang, Huang, Li, Rodina& Weng ’21]
[Arkani-Hamed, Huang& Huang ’20]

[mixed correlators numerics: Du, Zhang& Zhou ‘21]

[Tolley, Wang& Zhou ’20]
[SCH& van Duong ’20]



Gravity: new results
« Spin is GREAT »



• Dispersive sum rules for gravitons: 
 
 

• Prefactor grants superconvergent sum rules: 
 
     ,      


• Any MAGIC combination which writes G = positive sum will dominate all else: 
            
 
 

• Require positive contributions from:

B2(u) : 0 = ∮s=∞
(s − t)ds[ f(s, t) + f(t, s)] B3(u) : 0 = ∮s=∞

ds[ f(s, t) − f(t, s)]

[14]4⟨23⟩4 × 8πG [ 1
stu

+
|g3 |2 su

4t
+

|gs |2

−t
+ g4 + g5t + …]M+−−+ =

∝ t4 f(s, t)

-light particles of spin<=2 (SM, KK modes, etc) 
-heavy states with M>Mhigher-spin of arbitrary spin

        G = ∑
k

∫
−M2

0
duΨk(u)Bk(u) > 0 ⇒ G − #g3 ≥ 0, etc



Riem3 and Riem4 can't exceed GR

S =
1

16πG ∫ (R +
g̃3 Riem3

M4
higher−spin

+
g̃4 Riem4

M6
higher−spin

+ …)
's can't exceed O(1) 

without violating causality 
at scale ~Mhigher-spin

g̃

Figure 8: Allowed region for |bg3|2 and g4 in terms of Newton’s constant and the spin-

4 mass gap M . Note that both axes are rescaled by an infrared logarithm log(M/mIR).

Manifestly, both |bg3|2 and g4 obey two-sided bounds; a nonvanishing cubic coupling bg3 requires

a nonvanishing quartic g4. The dashed line gives the bound eq. 4.6.

stronger ones by using the numerical parameter choices in appendix C. Our optimal bounds

are:

|bg3|2M8  24.9 log(M/mIR) � 27.6 , (4.4)

g4M
6

8⇡G
 12.3 log(M/mIR) � 13.5 . (4.5)

To obtain these, we included all improved sum rules B
imp
2 and B

imp
3 with nmax = 6, and we

included additional @
q
p2B

(1) imp
4 (0) up to q = 2 to get the bound on g4.

A finer way to present the constraint is to carve out the allowed space in the three EFT

parameters |bg3|2, g4 and G, as shown in figure 8. These were are computed by using all im-

proved B2 and B3 for nmax = 5 and additional forward-limit contributions from @
q
p2B

(1) imp
4 (0)

up to q = 2.

A special limit of the bound is the dashed line in figure 8 which is tangent to the allowed

region near origin; from its slope we find numerically that

g4

8⇡G
� 0.26|bg3|2M2

. (4.6)

This is e↵ectively equivalent to the bound g4
8⇡G � 1

4 |bg3|2M2 reported in (6.13) of [52] using

forward-limit bounds of spin k � 4. This bound indicates that it is not possible to turn on a

cubic coupling without having a quartic coupling as well.
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[SCH, Li, Parra Martinez, Simmons-Duffin]



A tale of 3 effective field theorists:

L ⊃ m2
plR+c

Riem3

M2

"c<O(1) since couplings 
at cutoff should be O(1)"

L ⊃ m2
pl (R+c′￼

Riem3

M4 ) L ⊃ m2
plR+c′￼′￼m3

pl
Riem3

M5

∼ h∂2h+c′￼′￼

∂6h3

M5

When M<<mpl , what is the correct scaling of higher-derivative corrections with M & mpl ?

"c'<O(1): corrections can never

dominate GR below the cutoff"

"c"<O(1) so gravitons stay 
weakly coupled below M"



A tale of 3 effective field theorists:

L ⊃ m2
plR+c

Riem3

M2

"c<O(1) since couplings 
at cutoff should be O(1)"

L ⊃ m2
pl (R+c′￼

Riem3

M4 )
"c'<O(1): corrections can never

dominate GR below the cutoff"

L ⊃ m2
plR+c′￼′￼m3

pl
Riem3

M5

∼ h∂2h+c′￼′￼

∂6h3

M5

"c"<O(1) so gravitons stay 
weakly coupled below M"

too restrictive 
(untrue in string theory...)

too permissive 
(ruled out by our causality bounds!)= what we find!

When M<<mpl , what is the correct scaling of higher-derivative corrections with M & mpl ?



a − c
c

≤
23.0
Δ2

gap
[SCH, Li, Parra Martinez& Simmons-Duffin ’22]

Our results are insensitive to the large-scale curvature of spacetime:  
one only needs a flat local patch of size >> 1/Mhigher-spin

In AdS spacetime, localized scattering -> rigorous bounds on CFT central charges: 

[SCH, Mazac, Rastelli& Simmons-Duffin ’21]AdS5/CFT4:



Summary
• Gravitational scattering below Mhigher-spin can't significantly differ from GR 
 without violating causality.

Open questions
• Interactions between [higher-spin states] and Standard Model matter?


• Expect loops only .  Check?


• Remove Log[IR]’s (dressing, …)?


• Higher spacetime dimensions?             massive graviton(s)?


• What if M~Mpl: how close to classical GR can 4d quantum gravity be?


• …

O(N/M4
pl)



What do we know about Mhigher-spin?

• Very conservatively: hard to imagine not seeing ‘missing energy’ at LHC from 
a gravitationally-coupled spin-4 particle with M<MeV.


• Corresponds to a length scale:  ...


• Phenomenological constraints should be analyzed carefully.

M−1
higher−spin < 10−13m

gluon
spin 4 2

∼
αsE6

M4M2
pl

q

gluon
spin 4 2

graviton

∼
αsE16

M12M4
pl

or ∼
αsE8

M4M4
pl
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Figure 5. Exclusion plot in the plane (g2, �2) properly normalized and divided by
log(M/mIR). The shaded regions represent the allowed values obtained by using various
combinations of dispersion relations. In particular the light blue only uses the Ig dispersion
relation, while the darker blue uses the Ig,I0 and the Ig, I0, I�2 dispersion relations. The
bounds have been obtained in the parametric limit log(M/mIR) � 1.

Our most interesting result is that we find that the positivity approach used in this
paper cannot rule out violations to the black hole weak gravity conjecture. Specifically, we
find that the coefficient g2 must satisfy an inequality of the form

g2 > �
c1

M2M2
P

log

✓
M

mIR

◆
+

c0
M2M2

P

, (3.1)

where c1 = 24.257 and c0 = 33.328. Moreover, assuming that � = 0, this inequality is
strengthened to

g2 > �
c̃1

M2M2
P

log

✓
M

mIR

◆
+

c̃0
M2M2

P

, (� = 0) , (3.2)

where now c̃1 = �10.557 and c̃0 = 11.659. We can also construct bounds in the plane
g2, �2 by considering arbitrary values of the ratio �2M2

P/(g2M2). In figure 5 we present
such bounds in the limit mIR ! 0, where the logarithmic running dominates.

The rest of this section will be devoted to a detailed description of how to obtain bounds
in the presence of gravity. In section 3.1 we outline the method used to generate the bounds
in (3.1)–(3.2) and figure 5. Then in section 3.2.1 we present a completely explicit functional
that gives a weaker version of the bound (3.1). The stronger bound (3.1) is simply found
by extending this method to allow for more complicated functionals.

In section 3.4 we make an interpretation of our bounds. It is noteworthy that the
violations to the black hole gravity conjecture vanish in the limit M2/M2

P ! 0. By assuming
a scaling that is compatible with integrating out charged matter, which covers the case of
QED, we find that in this limit the usual QED positivity bounds such that g2 > 0 are
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Comments on photon scattering:

[Henriksson, McPeak, Russo, Vichi '22]

g2 ∼ ∑
charged fields

e4
i

m4
i

+ ∑
axions

1
f 2
am2

a

β ∼ ∑
charged fields

e2
i

m2
i

•WCG upper bound on   not seen in dispersion relation bounds: 
 

• true bounds at large g2 are much stronger (axions don't contribute to )

• small negative g2 allowed: time delay from graviton swamps possible ~   
 possible advance from matter loop.

β/g2

β
e2

F^4

RF^2



more on contact interactions using (more) spin>=4 null constraints: (two D4R4 )/R4

~s6
~s7
~s15

extremal slopes are only realized in 
region that disappears asymptotically!

6

−90
11
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Figure 12: Allowed regions for g6 and g
0
6, normalized by the quartic self-coupling, g4. The

blue, orange and olive regions show increasing derivative orders 6, 7 and 15 respectively. On

the left we superimposed the values realized in the models of subsection 4.1. (b) is a zoom

near the origin of the allowed region, showing the rapid convergence with derivative order.

Although negative values of g
0
6 are excluded asymptotically, at any finite derivative order the

boundary appears to be tangent to lines of slope 6 and �90
11 .

where ↵ � 1 was used to parameterize the size of suppression of higher-spin states. By

increasing ↵, ref [45] pushes the bounds asymptotically to

0  g
0
6

g6
 2 (assuming LSD) , (4.12)

thus narrowing down the space of couplings to that spanned by the aforementioned theories.

In this paper we do not assume LSD. However, by considering inhomogeneous bounds

involving g6/g4 and g
0
6/g4 of increasing derivative orders n (meaning null constraints having

up to the same scaling dimension as the coupling gn), we find that we can further narrow down

the space of couplings as shown in figure 12.12 As we increase the number of null constraints

at higher derivative order, we observe that g
0
6 is approaching g

0
6 � 0. We can thus claim that

positivity of g
0
6 holds asymptotically, which agrees with the prediction of LSD [45]. On the

rightmost edge g6M
4
/g4 = 1 we find the absolute upper bound g

0
6M

4
/g4 . 2.38, which is

significantly closer to the ratio predicted by LSD.

We can do even better by considering impact-parameter bounds on g6 and g
0
6 normalized

by gravity, which are the main novelty of this paper. This can be computed by using B
imp
i

with i = 2 . . . 6 with nmax = 8, with the result shown in Fig. 13a. Surprisingly, we find, as

12This result was found concurrently in Ref. [67], which also studies inhomogeneous bounds of the form

gnM
2(n�m)

/gm, and makes similar observations. We thank the authors of that paper for sharing their draft

with us and coordinating submission.
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Figure 12: Allowed regions for g6 and g
0
6, normalized by the quartic self-coupling, g4. The

blue, orange and olive regions show increasing derivative orders 6, 7 and 15 respectively. On

the left we superimposed the values realized in the models of subsection 4.1. (b) is a zoom

near the origin of the allowed region, showing the rapid convergence with derivative order.

Although negative values of g
0
6 are excluded asymptotically, at any finite derivative order the

boundary appears to be tangent to lines of slope 6 and �90
11 .

where ↵ � 1 was used to parameterize the size of suppression of higher-spin states. By

increasing ↵, ref [45] pushes the bounds asymptotically to

0  g
0
6

g6
 2 (assuming LSD) , (4.12)

thus narrowing down the space of couplings to that spanned by the aforementioned theories.

In this paper we do not assume LSD. However, by considering inhomogeneous bounds

involving g6/g4 and g
0
6/g4 of increasing derivative orders n (meaning null constraints having

up to the same scaling dimension as the coupling gn), we find that we can further narrow down

the space of couplings as shown in figure 12.12 As we increase the number of null constraints

at higher derivative order, we observe that g
0
6 is approaching g

0
6 � 0. We can thus claim that

positivity of g
0
6 holds asymptotically, which agrees with the prediction of LSD [45]. On the

rightmost edge g6M
4
/g4 = 1 we find the absolute upper bound g

0
6M

4
/g4 . 2.38, which is

significantly closer to the ratio predicted by LSD.

We can do even better by considering impact-parameter bounds on g6 and g
0
6 normalized

by gravity, which are the main novelty of this paper. This can be computed by using B
imp
i

with i = 2 . . . 6 with nmax = 8, with the result shown in Fig. 13a. Surprisingly, we find, as

12This result was found concurrently in Ref. [67], which also studies inhomogeneous bounds of the form

gnM
2(n�m)

/gm, and makes similar observations. We thank the authors of that paper for sharing their draft

with us and coordinating submission.
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[Bern, Kosmopoulous, Zhiboedov ’21]
[photons: Henriksson, McPeak, Russo, Vichi’21]



null constraints 
from IR crossing:

this constrains UV spectral density!  (light-light-heavy couplings)

L

L

L

L

H

⟨ 1
m4

J2

m2 ⟩
m≥M

≤
#

m2 ⟨ 1
m4 ⟩

m≥M

∼ b2

(ie. large black holes, long strings, etc, can never dominate sum rules)

 As far as sum rules are concerned, 
     heavy states with large spin (large b) can’t couple strongly
⇒

[Tolley, Wang& Zhou ’20]
[SCH& van Duong ’20]


