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Prospects for new atomic parity violation tests in francium
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Goals
• Long-term

• Atomic parity non-conservation (APV) measurements using 
the 7s-8s optical transition in laser-trapped francium

• nuclear spin independent (Standard Model physics)

• nuclear spin dependent (nuclear anapole moment, not 
discussed further today)

• Short-term

• spectroscopic investigations of 7s - 8s on critical path to APV

• Stark-induced amplitudes (started Sept 2018)

• relativistic and hyperfine-induced M1 amplitudes (started in 
Sept 2021)
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Atomic Parity Violation
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≈ 0.6 % 
test in Cs
(0.35 % experimental)

• The weak or Weinberg angle   "runs" with momentum transfer
• APV is a unique test at very low momentum transfer

θW



There is more to it
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Androic et al., Nature 557, 207–211 (2018)

• Cs APV and Qweak constrain parity violating electron quark couplings 
together



Remarkable APV reach
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from Frank Maas’ 
CIPANP 2018 talk

strong motivation to 
make progress on the 
APV front

comparison to e.g. 
direct searches 
complicated
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Antypas et al.  

Nat. Phys. 15, 120 (2019)

First demonstration of 

dependence of nuclear 

weak charge on # of

neutrons.

Experimental accuracy ≈ 0.5% in 
each isotope! Boulder Cs: 0.35%

But at this point, atomic theory not 
established at this level → alkalis still 
unique for interpretability

Finally, new results! Ytterbium by Mainz/Berkeley group

weak amplitude 
relative to Stark 
induced amplitude 



Vancouver


Pacific Spirit Forest


TRIUMF

ISAC

A facility for experiments with francium
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• Fr has not stable isotopes → need to work at a radioactive beam facility
• Boulder Cs experiment used a massive atomic beam: 1013 s-1 cm-2

• No existing RIB facility can do this, not even close
• Key figure: Cs had 1010 APV excitations per second
• Would only need ≈ 106 - 107 Fr atoms stored in a neutral atom trap to yield 

similar signal → can do this at TRIUMF/ISAC



The Francium Trapping Facility at TRIUMF/ISAC
part 1: online capture trap 
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Fr atoms from capture 
MOT enter here
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light




electric field plates

optical pumping
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Science chamber

Part 2: Science chamber
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Warm-up exercises with allowed transitions
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Hyperfine anomaly (Bohr Weisskopf

effect) in light Fr isotopes

Collister et al.

PRA 90, 052502 (2014)

& 92, 019902(E) (2015)

Zhang et al., PRL 115, 

042501 (2015)

208-213 Fr are “good” 
nuclei for APV

Benchmarks 

state-of-the-art 


atomic theory in Fr 

by Safronova and others

7s-7p1/2 (D1) isotope shifts in light Fr isotopes

•also Kalita et al. 
Phys. Rev. A 97, 042507 (2018)



7p3/2 photoionization: Crucial for APV
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Francium 7p3/2 photoionization
Collister et al. 2017, Can J Phys,  
2017, 95(3), 234-237
Important for APV to know this (roughly)

506 nm

817 nm

718 nm

ionization limit

506 nm

7p3/2

7p1/2

8s

7s



APV measurement in francium
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|8s̃1/2⟩ = |8s⟩ + ϵ′￼|p⟩

7p1/2

7p3/2

E1stark E1pvM1

|7s̃1/2⟩ = |7s⟩ + ϵ |p⟩

506 nm

817 nm

718 nm

• faint transitions
• oscillator strengths

•
•

•

fstark ≈ 10−10

fM1 ≈ 10−13

fpv ≈ 10−21 too weak for 
direct observation

• Observe interference between the Stark-induced and PV amplitudes ( )

• Interference terms changes sign under parity transformations (e.g. electric field 
reversals)

• modulation of decay fluorescence (in Fr ) → extract weak charge of Fr

•  always present → study and understand  and  in detail

feff ≈ 10−17

≈ 10−4

M1 M1 E1stark

R7s→8s ∝ |E1stark + M1 + E1pv |2

(@ few kV/cm)

hyperfine levels

measurements on 
different hyperfi





7s - 8s — Disentangling the amplitudes
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R7s−8s ∝ |E1stark + M1 + E1pv |2

|αE∥ + (βE⊥ + M1rel ± M1hf + E1pv)⟨F′￼m′￼| ⃗σ |Fm⟩ |2 I

 onlyΔF = 0

8s

7s
F

F

F+1

F+1

present on ΔF = ± 1

light intensity

electric fi



• to extract 

• have to know  to sub-% 
precision

• not possible to just measure their values 
• # of atoms, light intensity, detection 

efficiency cannot be determined at that 
level

E1pv

β, M1rel, M1hf



Hyperfine M1 to the rescue
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• the vector transition polarizability  can be calculated with state-of-the-art atomic 
theory reasonably well

• the relativistic magnetic dipole amplitude  is extremely difficult to predict
• but the hyperfine induced magnetic dipole amplitude  can be straightforwardly 

determined from the known hyperfine splittings
• in a suitable series of measurements, all the other amplitudes can be calibrated 

against it.

β

M1rel

M1hf

details in the next talk by 
Tim Hucko



Recent progress: M1 and Estark
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• Measured combined M1 + Estark signal as a function of electric field
Sept 2018 Sept 2021

R ∝ β2E2 + M12
rel ± M12

hf
 calculable from 

known hyperfi
M1hf

ΔF = ∓ 1

 predicted by Safronova et al. (much 
higher confi
β

M1rel
very hard to calculate

• extract  to  (evaluation in progress)
• better than the tension between experiment and theory in cesium

M1rel ≲ 10 %
for a standing wave (as 
in our PBC)  
interference is absent

E1stark − M1



Recent progress: technical
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• September 2018
• 100 mW of 506 nm light and 105 trapped atoms
• sufficient to detect β-type Stark-induced E1 at high field (≈ 6 kV/cm)
• no chance to observe M1 

• 2019-2021: development of UHV-compatible power buildup cavity (PBC)
• hard! (e.g. vibrational environment on beamline)
• reached ≈ 4000× power buildup

• close to theoretical limit, can't use more due to Fr photo-ionization
• very robust now, lock holds mirror distance at picometer level
• lock survives periodic 5 msec light on-off cycles!

T. Hucko  
A. Gorelov 
M. Kalita



What's next ?
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• precision measurement of  (sub-%)

• need more signal → improve detection efficiency of currently ≈ 1/2000
• difficult to improve light collection solid angle
• best bet is "burst detection"

M1rel, M1hf , β

7s1/2 

8s1/2 

7p1/2 
7p3/2 

F

F’

F
F’

(1)

(5)

(2)

(3)

(6)

(4)

506 nm

718 nm

|E1Stark + M1 + E1 PV |2 cycling transition 


• development started, some good challenges ahead
• goal1000× more signal (together with PBC: million-fold improvement over 2018)

• enough to get us signal wise to APV era but signal is not everything!



And then?
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• Beyond the  the  calibration, we need to do interference experiments
• atoms in magneto-optical trap largely (but not entirely) unpolarized
• need to optically pump the atoms in  stretched states
• new level of magnetic field control

M1 β

mF = ± F

trap on
quadrupole field
(8 G/cm)

quadrupole off
homogeneous field 
on (few G)

optical pumping 
measurement
burst detection

5-10 ms < 500 μs 3 ms

quadrupole on
homogeneous field 
off

< 500 μs

re-trapping
quadrupole field
(8 G/cm)

5-10 ms

trap lasers on
PBC off

trap lasers off  
PBC on

trap lasers on
PBC off

• chamber geometry leads to significant eddy current problems
• use 200 kHz bw bipolar power supplies (Matsusada)
• active coil current shaping to counter location- 

dependent eddy fields
• challenging → optically pumped  

atoms ready for 2023 campaign

time dependent B 
fi

B fi


after-next talk by Anima Sharma



Outlook
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• 2023 with optically pumped atoms
• measure ratio of the scalar to vector Stark transition polarizabilities 
• observe  interference (PBC removed)

α/β
E1stark − M1

• 2024
• attempt to see  interference (APV effect)E1stark − Epv

after-next talk by Anima Sharma

but 2022 is already half over



22

The FrPNC team
M. Kalita, A. Gorelov, A. Teigelhöfer, J. Behr —  TRIUMF

T. Hucko, A. Sharma, G. Gwinner  —  U Manitoba

L. Orozco — U Maryland

E. Gomez  — San Luis Potosi

S. Aubin  —  William & Mary


Joining in 2022:
J. Lassen and S. Malbrunot-Ettenauer (TRIUMF)

new PD, new grad student


Alumni:
M. Kossin (MSc, 2016-21, U Manitoba)

M. Pearson (2011-21, TRIUMF)

DeHart (MSc 2018, U Manitoba)

J. Zhang (PhD 2015, U Maryland)

R. Collister (Phd 2015, U Manitoba)

M. Tandecki (PD 2011-14, TRIUMF)
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