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Guo, Kai, et al. Materials Horizons 8.4 (2021

Table 1 Popular ML methods in design of mechanical materials

molecular and drug design.

:1163-1172.

ML method

Characteristics

Example applications in mechanical materials design

Linear regression;
polynomial regression

Support vector machine;
SVR

Random forest

Feedforward neural
network (FFNN); MLP

Recurrent neural network
(RNN); LSTM; GRU

Generative adversarial
networks (GANs)

Gaussian process
regression (GPR);
Bayesian learning

Active learning

Model the linear or polynomial relationship
between input and output variables

Separate high-dimensional data space with
one or a set of hyperplanes

Construct multiple decision trees for
classification or prediction

Connect nodes (neurons) with information
flowing in one direction

Capture features at different hierarchical
levels by calculating convolutions; operate
on pixel-based or voxel-based data

Connect nodes (neurons) forming a directed
graph with history information stored in
hidden states; operate on sequential data

Train two opponent neural networks to
generate and discriminate separately until
the two networks reach equilibrium;
generate new data according to the
distribution of training set

Treat parameters as random variables and
calculate the probability distribution of
these variables; quantify the uncertainty of
model predictions

Interacts with a user on the fly for labeling
new data; augment training data with

Modulus'*? or strength'** prediction

Strength'?* or hardness'?* prediction; structural topology
optimization'**

Modulus™* or toughness**® prediction

Prediction of modulus Jan strength ? toughness'* or

of or plastic behaviors;******
identification of colllslon load conditions;"*” design of spinodoid
metamaterials'®

05 o
104,10 102,103 o

Prediction of strain fields or elastic properties’
high-contrast composites, modulus of unidirectional
composites,'*® stress fields in cantilevered structures,'*” or yield
strength of additive-manufactured metals;'*" prediction of
fatigue crack propagation in polycrystalline alloys;'*® prediction
of crystal plasticity; ** design of tessellate composites; poroH
design of stretchable graphene km@ml,
structural topology optimization**

Prediction of fracture patterns in crystalline solids;'**
of plastic behaviors in

prediction

modeling of porous media'”

Prediction of modulus distribution by solving inverse
elasticity problems;** prediction of strain or stress fields in

composites;'*? composite design;'®* structural topology
imization;'**"*” archi ials design™®

Modulus'** or strength'***** prediction; design of
supercompressible and recoverable metamaterials*®

Strength prediction***

Functional space

Desired properties (red 0X
pot L‘Hll»l| solubility, toxi

simulation (Sc

Chemical space

(Drug-like, photovoltaics,
polymers, dyes)

Direct

Experiment or

equation)

rodinger

It is a relatively new but active area of research.
Many applications in, e.g., industrial material,

Z.Zhou et al.,

Scientific Reports, vol. 9, n

Inverse

High-throughput virtual
screening (e.g., with3
filtering >tagc.)

1, pp. 1-10, 2019

Inverse

Optimization
evolutionary strategi

generative models (V

GAN,RL)

Fig. 2. Schematic of the different approaches toward molecular design. Inverse design starts
from desired properties and ends in chemical space, unlike the direct approach that leads from
chemical space to the properties.

post-hoc experiments or simulations

Genetic or evolutionary
algorithms

Mimic evolutionary rules for optimizing

Hardness Predlcuon, “ designs of active
objective function

materials; ®**°! design of modular metamaterials'®*

174

Reinforcement learning Maximize cumulative awards with agents

reacting to the environments.

Deriving microstructure-based traction-.. on laws

B. Sanchez-Lengeling, A. Aspu uzik. Science 361.6400 (2018
Graph neural networks Operate on non-Euclidean data structures;
(GNNs) applicable tasks include link prediction,

node classification and graph classification




FXi for Detector Design

e When it comes to designing detectors with Al this is an area at its “infancy”.

e Typically full detector design is studied once the subsystem prototypes are ready (phase constraints from the
full detector or outer layers are taken into consideration).

e Need to use advanced simulations which are computationally expensive (Geant).
e Many parameters (and multiple objective functions): curse of dimensionality [1].
e Entails establishing a procedural body of instructions [2].

e The choice of a suitable algorithm is a challenge itself (no free lunch theorem [3]) and always requires some
degree of customization.

e Non-differentiable terms.

Al offers SOTA solutions to solve complex optimization problems in an efficient way

[1] Bellman, Richard. Dynamic programming. Vol. 295. RAND CORP SANTA MONICA CA, 1956.
[2] CF et al. JINST 15.05 (2020): P05009.
[3] Wolpert, D.H., Macready, W.G., 1997. Trans. Evol. Comp 1, 67-82


https://indico.jlab.org/event/409/

rxi—assisted Workflow memen ()

International Atomic Energy Agency

° Al can assist in designing more o
efficiently detectors (performance, customization ._.t I _.'
costs).

° It helps steering the design (and Design parameters ._L ’—'
eventually fine-tune it).

-9
° It can capture hidden correlations among

I 1
design parameters. ..'J 1 ()

Detector
Simulation

compute intensive (Geant4)

(AI/ML can also speed-up the simulation/reconstruction stack; cf. Amdahl’s law) 4


https://nucleus.iaea.org/sites/ai4atoms/SitePages/WG-AI4PHY.aspx
https://nucleus.iaea.org/sites/ai4atoms/SitePages/WG-AI4PHY.aspx

I_The EIC Detector

We have a reference (ECCE) detector.
Possible updates are currently being investigated (detector-1). Tracker System + PID

e The tracking system reconstructs charged particle tracks. It combines different technologies.
e Imaging Cherenkov detectors are the backbone of PID in EIC. Compute intensive to simulate / reconstruct.
e In this presentation: detector design, simulation/reconstruction with Al/ML for EIC 5 I



|_Bayesian Optimization

t(n) t(n+1)
e BO is a sequential strategy
developed for global 5 5 g
optimization. 3 N/—\—o 8
e After gathering evaluations
we builds a posterior & £
distribution used to - 2
construct an acquisition % e g
function. o | peint -
e This cheap function 1. Select a Sample by Optimizing the Acquisition Function.
det ) hat i t 2. Evaluate the Sample With the Objective Function.
etermines what 1S nex 3. Update the Data and, in turn, the Surrogate Function.
query point. 4.GoTo 1.

http://krasserm.qgithub.io/2018/03/21/bayesian-optimization/

http://krasserm.qithub.io/2018/03/1 9/qaussian-orocesses/|



http://krasserm.github.io/2018/03/21/bayesian-optimization/
http://krasserm.github.io/2018/03/19/gaussian-processes/

| Dual RICH: case study R S

E. Cisbani, A. Del Dotto, CF*, M. Williams et al. *+gas (1.6 m, n(CZFB): 1.0008)

"Al-optimized detector design for the future Electron-lon Collider: the dual-radiator RICH case." PhotoSensor

JINST 15.05 (2020): P05009.
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e  Continuous momentum coverage.
e Simple geometry and optics, cost effective.
e Legacy design from INFN, see EICUG2017

e 6 Identical open sectors (petals)
e  Optical sensor elements:

8500 cm?/sector, 3 mm pixel
e Large focusing mirror

1 |

"\ PhotoSensor

—_ Aerogel + Filter !



https://agenda.infn.it/event/13037/contributions/17199/attachments/12476/14030/deldotto_EICUG2017.pdf

|_Construction Constraints

The idea is that we have a bunch of parameters to optimize that characterize the detector design.
We know from previous studies their ranges and the construction tolerances.

parameter

R
pos r
pos 1
tiles x

tiles y
tiles z

Naerogel

tacrogel

Ranges depend mainly on mechanical constraints and optics requirements.
These requirements can change in the next future based on inputs from prototyping.

description

mirror radius

radial position of mirror center

longitudinal position of mirror center

shift along x of tiles center
shift along y of tiles center
shift along z of tiles center
aerogel refractive index
aerogel thickness

range [units]

'~ [290,300] [cm]

[125,140] [cm]

[-305,-295] [cm]

[-5,5] [cm]
[-5,5] [cm]
[-105,-95] [cm]
[1.015,1.030]
[3.0,6.0] [cm]

tolerance [units]

100 [pm]
100 [pm]
100 [pm]
100 [pm]
100 [pm]
100 [pm]

0.2%

1 [mm]

Variations below these
values are irrelevant




|_Convergence Criteria
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e Can in general be applied in the design space, in
the objective space, or looking at the behavior of
the acquisition function.

features
I

e \We defined a set of conditions to ensure
convergence:

o These correspond to the logic AND of
booleans on each feature and on the variation
of the figure of merit.

o They are built on standardized Z and Fisher
statistics.
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e Pre-processing of data required to remove outliers.




| Dual RICH: ante proposal @

E. Cisbani, A. Del Dotto, CF*, M. Williams et al. JINST 15.05 (2020): P05009

° Two radiators with different refractive indices for continuous
momentum coverage.

) Simulation of detector and processes is compute-intensive

° Legacy design from INFN (EICUG2017).

particle

Spherical Mirror

0[Gev] 5

aerogel (4 cm, n(400 nm): 1.02) + 3 mm acrylic filter + gas (1.6 m, n(C,F): 1.0008)

Define design parametrization and space

parameter description range [units] tolerance [units]
R mirror radius [290,300] [cm] 100 [pm]
posr radial position of mirror center [125,140] [cm] 100 [pm]
posl longitudinal position of mirror center | [-305,-295] [cm] 100 [pm]

tiles x shift along x of tiles center [-5,5] [cm] 100 [pm]
tiles y shift along y of tiles center [-5,5] [cm] 100 [pm]
[-105,-95] [cm] 100 [pm]
Naerogel aerogel refractive index [1.015,1.030] 0.2%

tiles z shift along z of tiles center

T
9o
4
]
|
T
8]
4
S
|

tacrogel aerogel thickness [3.0,6.0] [cm] 1 [mm)]

gas

aerogel
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Come up with a smart objective; No = 5.2
study / characterize properties %o
(noise, stats needed etc):
simulation + reconstruction

= [t o]

Optimization framework (embed convergence criteria)
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https://agenda.infn.it/event/13037/contributions/17199/attachments/12476/14030/deldotto_EICUG2017.pdf
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I Multi-Objective Optimization il
’ [\
.(
e The problem becomes challenging when the objectives are of conflict to each other, that anpap|
is, the optimal solution of an objective function is different from that of the other. B = .
-
s
e In solving such problems, with or without constraints, they give rise to a trade-off optimal -
solutions, popularly known as Pareto-optimal solutions. 3
e Due to the multiplicity in solutions, these problems were proposed to be solved suitably using evolutionary algorithms f2

which use a population approach in its search procedure.

e MO-based solutions are helping to reveal important hidden knowledge about a problem — a matter which is difficult to
achieve otherwise

e During the proposal we used both evolutionary (1) and bayesian approaches (2). | will describe now (1). For
implementation details see talk by

) Ratio,, = 1
Ratio,, = 1

The ECCE Tracker Design Optimization considered simultaneously:

momentum resolution
angular resolution
Kalman filter efficiency
(pointing resolution)
Mechanical constraints Ratio = —New _

Baseline



https://indico.cern.ch/event/1072579/contributions/4805912/attachments/2457542/4212627/KarthikSuresh_CAP2022_Final.pdf
https://en.wikipedia.org/wiki/Vilfredo_Pareto

Non-dominated Crowding

|_Elitist Non-Dominated ~domina Growding
sSorting Genetic sorting

Population [1]0]o]1]1]1]o]1]o]olo[1]0] 0j0/1]1]0[1]0/1]0[1]0[1]1

g l Population

@(t+1)

- Re jected

mutation

[1] Deb, K., et al. "A fast and elitist multiobjective genetic
algorithm" IEEE transactions on evolutionary
computation 6.2 (2002): 182-197.

[1]oJol1lo]1]o]olol1]o]1]1 oloJiJi[i]1]ol1]o]1]o]1]0

This is one of the most popular approach

(>35k citations on google scholar), characterized by: f2 The crowding distance d, of point
iy . . [ ) iis a measure of the objective
e Use of an elitist principle _ space around j which is not
e  Explicit diversity preserving mechanism i+1 cocuptedbyany °§2§Li‘;'ﬂf:i!2,!‘.
e Emphasis in non-dominated solutions 14 ':
| | |
| o |
The population R;is classified in non-dominated fronts. :_ -‘ i1
Not all fronts can be accommodated in the N slots of available inthenew | "~~~ 77 - °
population P, .. We use crowding distance to keep those points in the last

front that contribute to the highest diversity.



I_The EIC Detector
Tracker

CF, K. Suresh, Z. Papandreou et al (ECCE)

Al-assisted Optimization of the ECCE
Tracking System at the Electron lon Collider

arXiv:2205.09185

502

Parametrization

see talk by

URWELL3 Sagitta ITS3
Vertex ITS3 FST3

FST 2

uRWell 1 | Support Cone Angle (0) |

— Plateau
— Vertex/Sagitta Support
— Conical Support



https://indico.cern.ch/event/1072579/contributions/4805912/attachments/2457542/4212627/KarthikSuresh_CAP2022_Final.pdf

Figure 5: Tracking and PID system in the non-projective (left) and the ongoing R&D projective (right) designs: the two figures show the different geometry
and parametrization of the ECCE non-projective design (left) and of the ongoing R&D projective design to optimize the support structure (right). Labels in red
indicate the sub-detector systems that were optimized, while the labels in blue are the sub-detector systems that were kept fixed due to geometrical constraint. The
non-projective geometry (left) is a result of an optimization on the inner tracker layers (labeled in red) while keeping the support structure fixed, The angle made by
the support structure to the IP is fixed at about 36.5°. The projective geometry (right) is the result of an ongoing project R&D to reduce the impact of readout and
services on tracking resolution.




I C O n S t r a i n t S 1 Like, New Design Point

Engineering

Constraints.
Overlaps,
- Check Strong Penalize Heavily
& O t h e r Constraints

GEANT4
unstable with GEANT4 model Penalize Heavily
. Overlap Checks
minf,x) m=1,---,M
st gx)<0, j=1,---,J
xL ” ol =1 N timeout Omit the design
i—xi—xi, 1=1,---,

sub-detector constraint Compute
performance
metric in ‘p’
and ‘z’ bins.
Evaluate Fit
quality

soft constrai

EST/FST disks {M\ R, -R - in sensor ¢
min —_— sensor dimensions:

(30.0) mm

Analyse Rise Alarm
Performance & Fits Do not carry to next
call

oL in

strong constraint: minimum
EST/FST disks Zne1 — 2n >=10.0 cm distance between 2 consecutive
disks

soft constraint: residual in
; 27T sagia | 27T saginta f
sagitta layers mind |28 | o sensor coverage for ev yer;
W w sensor strip width: w = 17.8 mm

Compute objectives and pass to optimizer

strong constraint: minimum
URWELL In+1 —1rp >=5.0cm distance between uRwell barrel
layers

16



mtegration during EIC Detector Proposal

“Optimization” does not mean

Light/smart optimization pipelines ran during the “explorative”

necessarily “fine-tuning” phase of the detector proposal

e We want to use these
algorithms to: (1) steer the
design and suggest
parameters that a
“manual’/brute-force
optimization will likely miss to
identify; (2) further optimize
some particular detector
technology (see d-RICH
paper, e.g., optics properties)

Detector Team
Technology Selection
Baseline Design
Alternative Configurations

Physics Team
Physics Signal Selection
Performance Evaluation

Computing Team
Simulations Campaigns

e Al allows to capture hidden Optimization Pipelines
correlations among the

design parameters.

Solutions from Pareto Front
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e All “steps” (physics, detector)
involved in the Al o L
optimization, strong interplay New optimization pipelines

between working groups



https://iopscience.iop.org/article/10.1088/1748-0221/15/05/P05009/meta
https://iopscience.iop.org/article/10.1088/1748-0221/15/05/P05009/meta

Computational Resources

Initialise Design Population

v

Al-assisted design

Evaluate Design Points
Parallelize Evaluations

\

Multi-objective Optimization

Pymoo

Parallelizer / Scheduler
(2 Level Parallelization)

Analyze

(Thread_1)

i Design Point 2
Design Point 3

Design Point 4

% Design Point N

(Thread_2)

description

| symbol

| value

population size
# objectives
offspring
design size
# calls (tot. budget)

# cores

# charged  tracks
#bins in n
# bins in p

100
3
30
11 (9)
200
same as
offspring
120k
S
10

/7)DASK

time taken by GA + sorting

@ Expected Pareto (DTLZ1)
® NSGA-II Pareto (DTLZ1)

L, | —@— NSGA-Il time (DTLZ1)
0. —@— NSGA-Il time (tracker)

b LI I LI I LI I LI I LI I

Used a test problem DTLZ1

Verified scaling following MN? and convergence to
true front

~1s/call with 10* size!

For 11 variables and 3 objectives needs ~ 10000
evaluations to converge

~10k CPUhours / pipeline
18




ITNavigate” Pareto Front
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Black points represent the first
simulation campaign, and a preliminary
detector concept in phase-| optimization
which did not have a developed support
structure;

Blue points represent the fully
developed simulations for the final
ECCE detector proposal concept; red
points the ongoing R&D for the
optimization of the support structure.

Compared to black, there is an
improvement in performance in all n bins
with the exception of the transition
region, an artifact that depends on the
fact that black points do not include a
realistic simulation of the material
budget in the transition region!

In the transition region, it can be also
appreciated the improvement provided
by the projective design

O<hl<1
PWG requirement
—@— T Simulation Campaign
—=@— ECCE Simulation 2021
—=&— ECCE Ongoing R&D

1.5<hi<25
PWG requirement
—@— T Simulation Campaign
—=@— ECCE Simulation 2021
—=&— ECCE Ongoing R&D

1<hli<15
PWG requirement
—@— T Simulation Campaign
—=&— ECCE Simulation 2021
—=&— ECCE Ongoing R&D

1t simulation (black)
not realistic!

25<inl<3.5
PWG requirement
—=@— T Simulation Campaign
—@— ECCE Simulation 2021
—=&— ECCE Ongoing R&D

20



Validation

Reconstruction Efficiency

Reconstruction Efficiency
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Performance evaluated after optimization process

(both designs).

Notice red points are related to an ongoing project
R&D with a projective support structure for the

ECCE tracker.

DO invariant mass from semi-inclusive deep

1<hl<15
§ ECCE 2021 Simulation
—— D° - a* K Fit

[ o=0.0112 = 0.0004
[ X%NDF = 2.2885
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rﬁévigate interactively

Select the Method of Optimization

Multi Objective Bayesi izati GEANT4 Visualization of the design

e Visualization of results from
approximated Pareto front

e Exploration in a multiple objective
space

Design Parameters Table

e Facilitate study/comparison of
tradeoff solutions

® Momentum res ® Theta res

™ e Here MOBO is used using
FinerEvaIua(ionofMomentumresoluﬁonfor'iel\(lecledDesrgn BOTO rCh/ AX (beneflt from Strong
o : community support — Facebook)

K. Suresh (U. of Regina)

CF, Z. Papandreou, K. Suresh, Designing EIC with the assistance of Al: strategies and perspectives (in progress)

]


https://ai4eicdetopt.pythonanywhere.com

rﬁl—"accelerated" Simulations

) Geant4 _________ > DM
N
N
Q/) N : B Data

A
C] Noise

/% b * FastSim refinément
ma Dl@l@

* Delphes

Accuracy
,/

Decoder

Ey/Eror 29/

>
3

n* GEANT n* CaloGAN n* CaloFlow

Speed

C. Krause, D. Shih, CaloFlow, arXiv:2106.05285

e Computational demands for simulation of current and next generation HEP experiments inspired
investigation of surrogates using deep generative models (GAN, VAE, NF based) to decrease
simulation time while maintaining fidelity — “real” and “fake” harder to distinguish with NF

e Complex detectors require many fully simulated events as a dataset for the ML architecture

e Notice that a new detector design requires a new dataset...

New directions for surrogate models and differentiable programming for High Energy Physics detector simulation

arXiv:2203.08806v1 and references therein

A. Adelmann et al.,



rﬁl—“accelerated" Sim + Reco

supportingbracket

steel box

= =
I bar box

.i' I @ 4 GeV/c for different polar and azimuthal angle

=
=R
. i

Dependence on charged particle
kinematics

(p.(8,9),X.Y)

CF and J. Pomponi, DeepRICH, MLST (IOP) 1.1 (2020): 015010

e Itis fast* and provides accurate reconstruction
o 99% FastDIRC; 1us (GPU) vs 1ms (CPU) / particle
Can be extended to multiple particle types
Can be generalized to fast simulation
Can utilize (x,y,t) patterns if time is measured
Can deal with different topologies and detectors
Deeply learns the detector response (real data can be injected)

injected 1

reconstyucted T

. 7

CNN/MLP
Classifier

reconstructed

24



I_I\/IL Optimized Design of Experiments — MODE

Detectors design with Al is gaining a lot of interest.

e MODE is a recently formed collaboration of physicists and computer scientists who target the use of differentiable programming in
design optimization of detectors for particle physics applications

e  Ambitious project: develop a modular, customizable, and scalable, fully differentiable pipeline for the end-to-end optimization of
articulated objective functions that model in full the true goals of experimental particle physics endeavours, to ensure optimal detector
performance, analysis potential, and cost-effectiveness.

Detector parameters

Cost constraints and

detector-related Conceptual layout of an optimization pipeline
systematic uncertainties .
for a muon radiography apparatus.

An end to end optimization requires modeling
of simulations. Requires collect reference data
to train the surrogate models ML

st Detectsr implementations.

simulator
response

A. G. Baydin et al. Nuclear Physics News 31.1 (Mar 30, 2021): 25-28. 25



AI4EIC First Workshop on September 20621 -

s Formation of EICUG AI WG (a.k.a. AI4EIC) early 2022
Ny > ATAEIC website
—a LETIC : '
d Next meeting: topic-oriented on UQ Al Commuth@ EIC
e  AI4EIC Workshops
Next workshop on October 10-14 2622 at W&M e Tutorials
e Schools
6 sessions: Design, Simulations, Reco & Analysis, Control, SRO, computin frontlers L] Jomboree
FYI9  FY20 FY2l FY22 FY23 FY24 FY25 FY26 FY27 FY28 FY29 FY30 | FY: PY Hackathons
Crecs e Kaggle Challenges
e Outreach

Research &
Development

It may develop “sub-WG" groups
(From the AI4EIC Workshop):
| rTEm——— ) ECDer
e [ ——— Al for EIC (Fast) Simulations
Al for EIC Data Reco & Analysis
Al for EIC Control* automated workflows; data
quality monitoring; anomaly detection

Construction

Accelerator

&k _— G e Alfor EIC Streaming Readout

https://eic.ai/workshop

Detector

. Al for EIC Computing frontiers

Commissioning : . Al for EIC theory; phenomenology;
& Pre-Ops o .
: o (From our meetings):

Dia ke Level0 777 schedule e  Additional areas
Key (A) Actual - Completed I:I Planned I —
Date Milestones a Al Contingency

Al4EIC Worksho% structured to reflect the EIC schedule

AI4EIC survey form: https://forms.gle/6LADKTGaX7DeTVE46
*Schedule presented @ AI4EIC in 2021 Results preview: https://indico.bnl.gov/event/15636/



https://forms.gle/6LADKTGaX7DeTVE46
https://eic.ai/ai-ml-references
https://eicug.github.io/
https://eic.ai

One of the conclusions from the DOE Town Halls on Al for Science on 2019 was that AI / i
S u m m a r M “Al techniques that can optimize the design of complex, large-scale experiments have the o CCIENCE |

e Al can assist the design and R&D of complex experimental systems by providing more efficient design
(considering multiple objectives) and optimizing the computing budget needed to achieve that.

e EIC is one of the first experiments to be designed with the support of Al (already since 2020 with dRICH
design and during detector proposal for the tracker — See K. Suresh talk).

potential to revolutionize the way experimental nuclear physics is currently done”. ATUN RALL

o Roughly 1M CPU-core hours/year are anticipated for these studies (which will be extended to include

PID detectors, e.g., the dRICH) for detector-1.

e Cherenkov detectors are the backbone of PID at EIC. Need for fast simulations and fast
reconstruction/pattern recognition; generally, Al/ML for SRO-related activities. Pivotal for EIC.

None ever accomplished a multi-dimensional / multi-objective optimization of the global design
Costs can be explicitly included during the optimization provided a reliable parametrization)

An intrinsic overhead regards compute expensive simulations + reconstruction/analysis.

Larger populations to improve accuracy of the Pareto front

Just few Al/ML applications for Cherenkov, particularly utilizing low-level features. A lot to be done!

Possibility to leverage advancements in ML implemented on heterogeneous computing architectures.
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