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It is a relatively new but active area of research. 
Many applications in, e.g., industrial material, 
molecular and drug design. 

B. Sanchez-Lengeling, A. Aspuru-Guzik. Science 361.6400 (2018): 360-365.

Guo, Kai, et al. Materials Horizons 8.4 (2021): 1153-1172.

Z. Zhou et al., Scientific Reports, vol. 9, no. 1, pp. 1–10, 2019

AI for Design
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● When it comes to designing detectors with AI this is an area at its “infancy”. 

● Typically full detector design is studied once the subsystem prototypes are ready (phase constraints from the 
full detector or outer layers are taken into consideration).

● Need to use advanced simulations which are computationally expensive (Geant). 

● Many parameters (and multiple objective functions): curse of dimensionality [1].

● Entails establishing a procedural body of instructions [2]. 

● The choice of a suitable algorithm is a challenge itself (no free lunch theorem [3]) and always requires some 
degree of customization. 

● Non-differentiable terms. 

AI offers SOTA solutions to solve complex optimization problems in an efficient way  

[1] Bellman, Richard. Dynamic programming. Vol. 295. RAND CORP SANTA MONICA CA, 1956.
[2] CF et al. JINST 15.05 (2020): P05009. 

[3] Wolpert, D.H., Macready, W.G., 1997. Trans. Evol. Comp 1, 67–82

What follows based on a series of lectures on 
Detector Design with AI at the AI4NP Winter School

AI for Detector Design
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https://indico.jlab.org/event/409/


Detector 
Simulation 

Analysis of 
High-level 

reconstruction of 
events

Injection of 
Physics 
Events 

Design parameters

A.I.
gathers observations and 

suggests new points

customization

compute intensive (Geant4)

See invited talk at IAEA 
Technical Meeting on AI

● AI can assist in designing more 
efficiently detectors (performance, 
costs). 

● It helps steering the design (and 
eventually fine-tune it). 

● It can capture hidden correlations among 
design parameters. 

(AI/ML can also speed-up the simulation/reconstruction stack; cf. Amdahl’s law)

AI-assisted Workflow 
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https://nucleus.iaea.org/sites/ai4atoms/SitePages/WG-AI4PHY.aspx
https://nucleus.iaea.org/sites/ai4atoms/SitePages/WG-AI4PHY.aspx


● The tracking system reconstructs charged particle tracks. It combines different technologies. 
● Imaging Cherenkov detectors are the backbone of PID in EIC. Compute intensive to simulate / reconstruct. 
● In this presentation: detector design, simulation/reconstruction with AI/ML for EIC 

The EIC Detector

η →∞

η ~0

Tracker System + PID
We have a reference (ECCE) detector. 
Possible updates are currently being investigated (detector-1). 
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Bayesian Optimization
● BO is a sequential strategy 

developed for global 
optimization.

● After gathering evaluations 
we builds a posterior 
distribution used to 
construct an acquisition 
function.
 

● This cheap function 
determines what is next 
query point.

1. Select a Sample by Optimizing the Acquisition Function.
2. Evaluate the Sample With the Objective Function.
3. Update the Data and, in turn, the Surrogate Function.
4. Go To 1.

t(n) t(n+1)

http://krasserm.github.io/2018/03/21/bayesian-optimization/
http://krasserm.github.io/2018/03/19/gaussian-processes/
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http://krasserm.github.io/2018/03/21/bayesian-optimization/
http://krasserm.github.io/2018/03/19/gaussian-processes/


Dual RICH: case study

● 6 Identical open sectors (petals)
● Optical sensor elements: 

8500 cm2/sector, 3 mm pixel
● Large focusing mirror 

● Continuous momentum coverage. 
● Simple geometry and optics, cost effective.
● Legacy design from INFN, see EICUG2017 

aerogel (4 cm, n(400 nm): 1.02) 
+ 3 mm acrylic filter 
+ gas (1.6 m, n(C2F6): 1.0008)

E. Cisbani, A. Del Dotto, CF*, M. Williams et al. 
"AI-optimized detector design for the future Electron-Ion Collider: the dual-radiator RICH case." 

JINST 15.05 (2020): P05009.
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https://agenda.infn.it/event/13037/contributions/17199/attachments/12476/14030/deldotto_EICUG2017.pdf


Construction Constraints   

3σ

(2σ bands)

Ranges depend mainly on mechanical constraints and optics requirements.
These requirements can change in the next future based on inputs from prototyping.
 

The idea is that we have a bunch of parameters to optimize that characterize the detector design. 
We know from previous studies their ranges and the construction tolerances. 
 Variations below these 

values are irrelevant
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EARLY STOPPING

Convergence Criteria
● Can in general be applied in the design space, in 

the objective space, or looking at the behavior of 
the acquisition function.  

● We defined a set of conditions to ensure 
convergence: 

○ These correspond to the logic AND of 
booleans on each feature and on the variation 
of the figure of merit. 

○ They are built on standardized Z and Fisher 
statistics. 

● Pre-processing of data required to remove outliers. 
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Dual RICH: ante proposal
E. Cisbani, A. Del Dotto, CF*, M. Williams et al. JINST 15.05 (2020): P05009

aerogel (4 cm, n(400 nm): 1.02) + 3 mm acrylic filter + gas (1.6 m, n(C2F6): 1.0008)

● Two radiators with different refractive indices for continuous 
momentum coverage. 

● Simulation of detector and processes is compute-intensive

● Legacy design from INFN (EICUG2017).

1

2 Come up with a smart objective; 
study / characterize properties 
(noise, stats needed etc): 
simulation + reconstruction 

3 Optimization framework (embed convergence criteria)

Analysis + Validation4

principled vs random

Define design parametrization and space 

calls
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https://agenda.infn.it/event/13037/contributions/17199/attachments/12476/14030/deldotto_EICUG2017.pdf
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Multi-Objective Optimization
● The problem becomes challenging when the objectives are of conflict to each other, that 

is, the optimal solution of an objective function is different from that of the other. 

● In solving such problems, with or without constraints, they give rise to a trade-off optimal 
solutions, popularly known as Pareto-optimal solutions.  

● Due to the multiplicity in solutions, these problems were proposed to be solved suitably using evolutionary algorithms 
which use a population approach in its search procedure.

● MO-based solutions are helping to reveal important hidden knowledge about a problem – a matter which is difficult to 
achieve otherwise 

● During the proposal we used both evolutionary (1) and bayesian approaches (2). I will describe now (1). For 
implementation details see talk by K. Suresh. 

ÿ2

ÿ1

V. Pareto
 1848-1923

The ECCE Tracker Design Optimization considered simultaneously:

● momentum resolution 
● angular resolution
● Kalman filter efficiency
● (pointing resolution)  
● Mechanical constraints 12

https://indico.cern.ch/event/1072579/contributions/4805912/attachments/2457542/4212627/KarthikSuresh_CAP2022_Final.pdf
https://en.wikipedia.org/wiki/Vilfredo_Pareto


Elitist Non-Dominated 
Sorting Genetic 

Population
@(t)

Offspring
Population

@(t+1)

Front

Offspring

Population

[1] Deb, K., et al. "A fast and elitist multiobjective genetic 
algorithm" IEEE transactions on evolutionary 
computation 6.2 (2002): 182-197. 

This is one of the most popular approach 
(>35k citations on google scholar), characterized by:

● Use of an elitist principle
● Explicit diversity preserving mechanism
● Emphasis in non-dominated solutions

The population Rt is classified in non-dominated fronts. 
Not all fronts can be accommodated in the N slots of available in the new 
population Pt+1. We use crowding distance to keep those points in the last 

front that contribute to the highest diversity. 

The crowding distance di of point 
i is a measure of the objective 

space around i which is not 
occupied by any other solution in 

the population. 

i

f1

f2

i+1

i-1

crossover

mutation
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The EIC Detector 
Tracker 

Parametrization

14see talk by K. Suresh

CF, K. Suresh, Z. Papandreou et al (ECCE)

AI-assisted Optimization of the ECCE 
Tracking System at the Electron Ion Collider

arXiv:2205.09185

https://indico.cern.ch/event/1072579/contributions/4805912/attachments/2457542/4212627/KarthikSuresh_CAP2022_Final.pdf


Non-Projective VS Projective, actually…  
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Variable pars; Fixed pars



Constraints,
Overlaps,
& Other
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Integration during EIC Detector Proposal

● We want to use these 
algorithms to: (1) steer the 
design and suggest 
parameters that a 
“manual”/brute-force 
optimization will likely miss to 
identify; (2) further optimize 
some particular detector 
technology (see d-RICH 
paper, e.g., optics properties)

● AI allows to capture hidden 
correlations among the 
design parameters.

● All “steps” (physics, detector) 
involved in the AI 
optimization, strong interplay 
between working groups  

“Optimization” does not mean 
necessarily “fine-tuning”

Light/smart optimization pipelines ran during the “explorative” 
phase of the detector proposal
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https://iopscience.iop.org/article/10.1088/1748-0221/15/05/P05009/meta
https://iopscience.iop.org/article/10.1088/1748-0221/15/05/P05009/meta


Computational Resources time taken by GA + sorting

● Used a test problem DTLZ1
● Verified scaling following MN2 and convergence to 

true front
● ~1s/call with 104 size!
● For 11 variables and 3 objectives needs ~ 10000 

evaluations to converge 
~10k CPUhours / pipeline
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“Navigate” Pareto Front
1 Can take a snapshot any time 

during evaluation
2 Updated Pareto Front at time t

3 At each point in the Pareto front 
corresponds a design 

4 Analysis of Objectives (momentum resolution, angular resolution, KF efficiency)

19



“Evolution”
● Black points represent the first 

simulation campaign, and a preliminary 
detector concept in phase-I optimization 
which did not have a developed support 
structure;

● Blue points represent the fully 
developed simulations for the final 
ECCE detector proposal concept; red 
points the ongoing R&D for the 
optimization of the support structure. 

● Compared to black, there is an 
improvement in performance in all η bins 
with the exception of the transition 
region, an artifact that depends on the 
fact that black points do not include a 
realistic simulation of the material 
budget in the transition region! 

● In the transition region, it can be also 
appreciated the improvement provided 
by the projective design

1st simulation (black) 
not realistic!

✅

✅

✅
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Validation Reconstruction Efficiency

D0 invariant mass from semi-inclusive deep 
inelastic scattering

Performance evaluated after optimization process 
(both designs). 

Notice red points are related to an ongoing project 
R&D with a projective support structure for the 
ECCE tracker.   
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Navigate interactively

22
K. Suresh (U. of Regina) https://ai4eicdetopt.pythonanywhere.com
CF, Z. Papandreou, K. Suresh, Designing EIC with the assistance of AI: strategies and perspectives (in progress)  

● Visualization of results from 
approximated Pareto front 

● Exploration in a multiple objective 
space

● Facilitate study/comparison of 
tradeoff solutions

● Here MOBO is used using 
BoTorch/Ax (benefit from strong 
community support — Facebook) 

https://ai4eicdetopt.pythonanywhere.com


ML-“accelerated” Simulations
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A. Adelmann et al., New directions for surrogate models and differentiable programming for High Energy Physics detector simulation 

arXiv:2203.08806v1 and references therein 

● Computational demands for simulation of current and next generation HEP experiments inspired 
investigation of surrogates using deep generative models (GAN, VAE, NF based) to decrease 
simulation time while maintaining fidelity — “real” and “fake” harder to distinguish with NF

● Complex detectors require many fully simulated events as a dataset for the ML architecture 

● Notice that a new detector design requires a new dataset…  

generative
refinement

C. Krause, D. Shih, CaloFlow, arXiv:2106.05285



ML-“accelerated” Sim + Reco
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Kaons @ 4 GeV/c for different polar and azimuthal angle

Dependence on charged particle 
kinematics 

(p,(θ,φ)*,X,Y)

reconstructed

injected

latent space

reconstructed  π 
injected π 

● It is fast* and provides accurate reconstruction
○ 99% FastDIRC; 1us (GPU) vs 1ms (CPU) / particle

● Can be extended to multiple particle types 
● Can be generalized to fast simulation
● Can utilize (x,y,t) patterns if time is measured
● Can deal with different topologies and detectors 
● Deeply learns the detector response (real data can be injected)

CF and J. Pomponi, DeepRICH, MLST (IOP) 1.1 (2020): 015010



ML Optimized Design of Experiments – MODE
● Detectors design with AI is gaining a lot of interest. 

● MODE is a recently formed collaboration of physicists and computer scientists who target the use of differentiable programming in 
design optimization of detectors for particle physics applications

● Ambitious project: develop a modular, customizable, and scalable, fully differentiable pipeline for the end-to-end optimization of 
articulated objective functions that model in full the true goals of experimental particle physics endeavours, to ensure optimal detector 
performance, analysis potential, and cost-effectiveness.

Conceptual layout of an optimization pipeline 
for a muon radiography apparatus. 

An end to end optimization requires modeling 
of simulations. Requires collect reference data 
to train the surrogate models ML 
implementations. 

A. G. Baydin et al. Nuclear Physics News 31.1 (Mar 30, 2021): 25-28. 25



AI4EIC

26
AI4EIC survey form:  https://forms.gle/6LADKTGaX7DeTVE46
Results preview: https://indico.bnl.gov/event/15636/

First Workshop on September 2021 — JINST proceedings 

Formation of EICUG AI WG (a.k.a. AI4EIC) early 2022 https://eicug.github.io/ 

AI4EIC website https://eic.ai

Next meeting: topic-oriented on UQ

Next workshop on October 10-14 2022 at W&M 

AI Community @ EIC
● AI4EIC Workshops
● Tutorials
● Schools  
● Jamboree 
● Hackathons 
● KaĀĀle ChallenĀes
● Outreach 

It may develop “sub-WG” Āroups 
(From the AI4EIC Workshop):

● AI ÿor EIC DesiĀn* 
● AI ÿor EIC (Fast) Simulations 
● AI ÿor EIC Data Reco & Analysis 
● AI ÿor EIC Control*: automated workflows; data 

quality monitorinĀ; anomaly detection 
● AI ÿor EIC StreaminĀ Readout  
● AI ÿor EIC ComputinĀ ÿrontiers 
● AI ÿor EIC theory; phenomenoloĀy;

(From our meetinĀs):
● Additional areas

6 sessions: Design, Simulations, Reco & Analysis, Control, SRO, computing frontiers
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*Schedule presented @ AI4EIC in 2021

https://forms.gle/6LADKTGaX7DeTVE46
https://eic.ai/ai-ml-references
https://eicug.github.io/
https://eic.ai


Summary
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● AI can assist the design and R&D of complex experimental systems by providing more efficient design 
(considering multiple objectives) and optimizing the computing budget needed to achieve that.   

● EIC is one of the first experiments to be designed with the support of AI (already since 2020 with dRICH 
design and during detector proposal for the tracker — See K. Suresh talk). 

○ Roughly 1M CPU-core hours/year are anticipated for these studies (which will be extended to include 
PID detectors, e.g., the dRICH) for detector-1. 

● Cherenkov detectors are the backbone of PID at EIC. Need for fast simulations and fast 
reconstruction/pattern recognition; generally, AI/ML for SRO-related activities. Pivotal for EIC. 

 
None ever accomplished a multi-dimensional / multi-objective optimization of the global design

Costs can be explicitly included during the optimization provided a reliable parametrization)  

An intrinsic overhead regards compute expensive simulations + reconstruction/analysis. 

Larger populations to improve accuracy of the Pareto front 
 
Just few AI/ML applications for Cherenkov, particularly utilizing low-level features. A lot to be done!

Possibility to leverage advancements in ML implemented on heterogeneous computing architectures. 

One of the conclusions from the DOE Town Halls on AI for Science on 2019 was that 
“AI techniques that can optimize the design of complex, large-scale experiments have the 
potential to revolutionize the way experimental nuclear physics is currently done”.
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