On the Global Extraction of GPDs from DVCS Nucleon Structure from JLAB and EIC

Canadian Association of Physicists

Association canadienne des physiciens et physiciennes Kyle Shiells June 9, 2022

Outline

Introduction

Electron diffraction on Proton

Electron scattering at Stanford 1954 - 57

....

A linear accelerator LINAC was used to accelerate the electrons

- High energy electrons can probe the short distances in a proton
- Cross section measured by detectors sees an "intensity" pattern $\frac{d\sigma}{d\Omega} \sim |F(q)|^2$

```
Form factor
```

 Nucleon charge distribution can be found by Fourier transform

$$o_e(r) = \int F(q) e^{-iq \cdot r} d^3 q$$

Further Imaging the Proton

Additional challenges:

- High energy electrons have energy on the order of proton's mass
- Coherence: smaller cross sections \Rightarrow lower imaging efficiency
- Recoil: proton recoil makes diffraction pattern harder to relate to spacial distributions

(θ, φ)

ons

 Due to time dilation the "stuff" inside the proton doesn't have much time to interact with itself

Infinite Momentum Frame:

 $M_{eff} = \gamma M \to \infty$

- Feynman: the densities probed in form factors are related to partons
- Realized in deep inelastic scattering (DIS) at high Q^2

 $f = f(x, Q^2)$

Parton distribution function (PDF)

These PDFs here only tell you about the longitudinal momentum of the partons

Deeply Virtual Exclusive Processes

- Now includes the emission of a photon, or a meson
- Includes 2 more kinematic variables

 $f(x,Q^2) \to F(x,\xi,t,Q^2)$ Generalized Parton distribution (GPD)

 More challenging than Hofstadter's (Inclusive) process: more difficult to detect all final state particles and much smaller cross sections

• What are GPDs good for?

Proton Spin Sum Rules

• To solve the problem, we need AM sum rules from QCD

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4} F_a^{\mu\nu} F_{\mu\nu}{}_a + \sum_f \bar{\psi}_f (i)$$

- Important factors for deriving sum rules:
 - Nucleon polarization
 - Choosing a frame or be frame-independent
 - Gauge-invariance
 - One needs to isolate INTRINSIC AM from CM contributions

Spin Sum Rule Roadmap

Less experimental constraints

Deeply Virtual Compton Scattering

Choosing an Exclusive Process

- Choosing a scattering process is like a parasite choosing a host
- Candidates: DVCS (γ production), DVMP, DDVCS, TCS, ...
- DVCS is "clean" and has a growing ensemble of data (HERMES, JLAB, COMPASS, ZEUS) and dominated by quark GPDs $\rightarrow H_q$, E_q
- DVMP example: J/ψ production (Gluon-X, EIC) = gateway to gluon GPDs $\rightarrow H_g$, E_g

Focus on DVCS for extraction twist-2 quark GPDs

Timeline of DVCS Cross Section Calculations

- X. Ji, PRD 55 (1997) 71114 First attempt, twist-2 (Ji)
- Belitsky, Mueller, Kirchner, Phys Rev D 82 (2010) 074010 (BMK)
- Braun, Manashov, Muller, Pirnay, PRD89, (2019) 074022 (BMMP)
- B. Kriesten et al., Phys Rev D 101 (2020) 054021 (UVa)

Y. Guo, X. Ji, K. Shiells, JHEP 12 (2021) 103 (GSJ)

Y. Guo, X. Ji, K. Shiells, B. Kriesten (2022) 2202.1114 • Extension of 2021 work with genuine twist-3 CFFs

Belitsky, Mueller, Kirchner, Nuc Phys B 629 (2002) 323 • Full twist-2 + WW twist-3, certain light cone choice made, kinematical approximations made, all polarization channels covered

> Kinematic improvements made to 2001 work, but doesn't cover all polarization channels

Extension of BMK's work, incorporating higher order target and mass corrections

 Genuine twist-3 CFFs used, physics connections to other processes made, all polarizations covered

 Full twist-2 + WW twist-3, optimal light cone choice found, no kinematical approximations used, all polarization channels covered

GSJ Formalism (Guo, Shiells, Ji)

- Considers the 5-fold differential DVCS Cross section
- Comes from 2 amplitudes:

- Bethe-Heitler is QED-calculable
- Twist expands the Compton amplitude with respect to a general • light-cone direction, expressing in terms of universally-defined twist-2 quark-quark GPDs
- Allow for a polarized beam and target •
- Cannot measure final photon polarization \Rightarrow sum over its polarizations

K. Shiells 10

• The total cross section has 3 parts:

Bethe-Heitler (QED) Compton (~ *CFF*²) Interference (*CFF*)

 $\sigma_{
m Tot}(y, x_B, t, Q, \phi, \phi_S)$

• We can always express the Compton & Interference σ 's into a product of a (scalar coefficient) \times (CFF expression)

$$\sigma(x_S) \equiv \frac{\mathrm{d}^5 \sigma}{\mathrm{d}x_B \mathrm{d}Q^2 \mathrm{d}|t| \mathrm{d}\phi \mathrm{d}\phi_S} = \frac{lpha_{\mathrm{EM}}^3 x_B y^2}{16\pi^2 Q^4 \sqrt{1+\gamma^2}} \left(\left|\mathcal{T}_{\mathrm{DVCS}}\right|^2 + \left|\mathcal{T}_{\mathrm{BH}}\right|^2 + \mathcal{T}_{\mathrm{BH}}\right)^2$$

Example: UU cross section

$$\sigma_{\rm DVCS}^{UU} = \frac{\Gamma}{Q^4} 4h^U \mathcal{D}_1^{\rm DVCS}(\mathcal{F}_i^2)$$

$$\sigma_{\mathcal{I}}^{UU} = -\frac{e_l \Gamma}{Q^2 t} \left[A^{I,U} \mathcal{A}_{\rm Re}^U(\mathcal{F}_i) + B^{I,U} \mathcal{B}_{\rm Re}^U(\mathcal{F}_i) + C^{I,U} \mathcal{C}_{\rm R}^U \right]$$

• Twist-2 dynamics $\mathcal{F}_i \sim \operatorname{Re}, \operatorname{Im} \{\mathcal{H}, \mathcal{E}, \widetilde{\mathcal{H}}, \widetilde{\mathcal{E}}\}$

= 8 unknowns

 We want data at as many polarization channels as possible:
 UU, LU, UL, LL, 2 × (UT, LT) = 8 channels

Using Harmonics

• All scalar coefficients can be expressed in terms of harmonic series

e.g.
$$\sigma_{\rm DVCS}^{UU} = \frac{\Gamma}{Q^4} 4 \frac{h^U}{P_1^{\rm DVCS}} (\mathcal{F}_i^2) \qquad \sigma_{\mathcal{I}}^{UU} = -\frac{e_l \Gamma}{Q^2 t} \left[A^{I,U} \mathcal{A}_{\rm Re}^U (\mathcal{F}_i) + B^{I,U} \mathcal{B}_{\rm Re}^U (\mathcal{F}_i) + C^{I,U} \mathcal{C}_{\rm Re}^U (\mathcal{F}_i) \right]$$
$$h^U = \sum_{n=0}^3 h_n^U \cos(n\phi) \qquad A^{I,U} = \frac{Q^4}{\mathcal{P}_1(\phi)\mathcal{P}_2(\phi)} \sum_{n=0}^3 a_n^{I,U} \cos(n\phi)$$

- In general leading twist dominates the lower-order harmonic coefficients, while the higher-order harmonics involve higher twist contributions and are kinematically suppressed
- General idea: we can fit harmonic coefficients to the data, acquiring equations which constrains the CFFs — this works for both cross sections and asymmetries

Example of Harmonic Fitting

Global Extraction of GPDs

Data Analysis: Extraction of twist-2 CFFs

• 3 general approaches:

1. Local Extraction in (x_B, t, Q^2)

M. Boer, M. Guidal, JPG Nucl & Part 42 (2015) 034023 K. Kumericki, D. Muller, M. Murray, Phys of Part & Nucl 45 (2014) 723 B. Kriesten, S. Liuti, (2020) 2011.04484

2. Global Extraction with ML (no biased model)

M. Cuic et al., PRL 125 (2020) 232005 H. Moutarde et al., EPJC 79 (2019) 614 Grigsby et al. 2012.04801 (2021) 3. Global Extraction with a parametrized model

 $\sigma_{\rm DVCS} = \sigma_{\rm DVCS} \left(x_B, t, Q^2, E_b, \phi, \mathcal{F}_i(x_B, t, Q^2) \right)$

A few remarks...

- This LOCAL extraction of CFFs is the most **model-independent** first step towards extracting GPDs from DVCS data
- However, as we have **8 unknown parameters**, it's very difficult to get enough data at the same kinematical point for a stable extraction
- Even if we do find the CFFs at several (x_B, t, Q^2) points, we are still left with the difficult **inversion problem** to get GPDs
- This motivates us to directly **model (parameterize) GPDs**, and fit them GLOBALLY to DVCS data

GPD Basics

to include an elastic recoil of nucleon.

$$F_q(x,\xi,t) \sim \int \frac{d\lambda}{2\pi} e^{i\lambda x} \left\langle P' \left| \bar{\psi} \left(-\frac{\lambda n}{2} \right) \gamma^+ \psi \left(\frac{\lambda n}{2} \right) \right| P \right\rangle$$
$$\Delta \equiv P' - P \neq 0 \qquad \longrightarrow \qquad t \equiv \Delta^2 \neq 0 \qquad \xi \equiv -\Delta \cdot n/2$$
This non-zero momentum transfer will change the physical

• Generalized parton distributions are the generalization of parton distributions

 $(2\bar{P}\cdot n) \neq 0$ pictures

GPD Models

- Double Distributions
 - Integral representation, originally intended as a toy model
 - Since then they've been used extensively
 - Do not work well with scale evolution
 - Cannot fit all the data well
- Dynamical models
 - Assumes a physical sub-process for the GPDs
 - Can be difficult to reconcile with the PDF and DA interpretations
 - May or may not scale evolve well
- Conformal Moment Expansion
 - Opposite to dynamical models, they are very mathematical in construction
 - However they're very general and meet required GPD properties
 - Scale evolve very nicely

Conformal moment expansion

Therefore, we expansion GPD in terms of its conformal moments

$$F(x,\xi,t) = \sum_{n} (-1)^{n} p_{n} \left(\frac{x}{\xi}\right)$$

where the so-called conformal wave functions are

$$p_n(|x| < 1) = \frac{2^n \Gamma\left(\frac{5}{2} + n\right)}{\Gamma\left(\frac{3}{2}\right) \Gamma(3 + n)}$$

problem: $p_n(x)$ only defined for $|x| \le 1$ Schlafli integral

$$p_j(x,\xi) = -\frac{\Gamma(5/2+j)}{\Gamma(1/2)\Gamma(2+j)} \frac{1}{2i\pi} \oint_{-1}^1 du \frac{(u^2-1)^{j+1}}{(x+u\xi)^{j+1}}$$

 $C_{n}^{\frac{3}{2}}(x)$ are Gegenbauer polynomials, and they renormalize multiplicatively under LO evolution kernel

$$\int_{-1}^{1} \frac{\mathrm{d}x'}{|\xi|} \left[V\left(\frac{x}{\xi}, \frac{x'}{\xi}\right) \right]_{+} C_{j}^{\frac{3}{2}} \left(\frac{x}{\xi}\right) = \gamma_{j} C_{j}^{\frac{3}{2}} \left(\frac{x'}{\xi}\right)$$

solution: analytically continue to |x| > 1 with the help of the

Modeling the small - ξ dependence

We can start to put in the xi-dependence with the polynomiality condition in mind.

$$\mathcal{F}_j(\xi, t) = \sum_{l=0}^{2l \le (j+1)} \xi^{2l} \bar{\mathcal{F}}_{jl}(t)$$

• To start with we can take the (semi-)forward limit, which must obey a certain Regge behaviour

$$\lim_{\xi \to 0} \mathcal{F}_j(\xi, t) = \bar{\mathcal{F}}_{j0}(t)$$

 \Box Then one could add more *t*-dependent functions for the higher order ξ terms

$$\lim_{\xi \to 0} \mathcal{F}_j(\xi, t) =$$

$$\bar{\mathcal{F}}_{j0}(t) + \xi^2 \bar{\mathcal{F}}_{j2}(t) + \cdots$$

GUMP: GPDs from Universal Moment Parameterization

• The motivation is the Mellin moments modeling

PDF
$$q(x) = Nx^{-\alpha}(1-x)^{\beta}$$

• We have the following model of conformal moments

$$\mathcal{F}_{j}(\xi = 0, t) = N_{0} \frac{B(1 + j - \alpha, B_{0})}{B(1 - \alpha, 1)}$$

- such that $\lim_{t,\xi\to 0} \mathcal{F}_j(\xi,t) = \frac{B(1+j-\alpha,1+\beta)}{B(1-\alpha,1+\beta)}$
- Simplest model includes 4 parameters/flavour/order of ξ

$$\mathcal{F} \sim N, \alpha, \beta, \alpha'$$

Putting it all together

$$F(x,\xi,t) = \sum_{n} (-1)^{n} p_n\left(\frac{x}{\xi}\right) \xi^{-n-1} \mathcal{F}_n(\xi,t)$$

Conformal wave functions spell out x/ξ dependence

$$p_{j}(|x| \leq \xi, \xi) = \frac{2^{j+1}\Gamma(5/2+j)\xi^{-j-1}}{\Gamma(1/2)\Gamma(1+j)} (1+x/\xi)_{2}F_{1}\left(-1-j, j+2, 2x\right)$$

and
$$p_{j}(x > \xi, \xi) = \frac{\sin(\pi[j+1])}{\pi} x^{-j-1} {}_{2}F_{1}\left(\begin{array}{c} (j+1)/2, (j+2)/2x \\ 5/2+j \end{array}\right)$$

Mellin - Barnes Integral Representation

$$F(x,\xi,t) = \frac{1}{2i} \int_{c-i\infty}^{c+i\infty} dj \frac{p_j(x,\xi)}{\sin(\pi[j+i))} dj \frac{p$$

Remaining ξ , *t* dependence expanded into polynomial in ξ and phenomenological *t*-dep FF

$$\mathcal{F}_{j}(\xi, t) = \sum_{k=0,\text{even}}^{k_{\text{cut}}} \xi^{k} \mathcal{F}_{j,k}(t)$$
$$\mathcal{F}_{j,k}(t) = N_{k} B(j+1-\alpha_{k}, 1+\beta_{k}) \frac{j+1-k-\alpha_{k}}{j+1-k-\alpha_{k}}$$

 $\frac{\mathcal{F}_j}{1]}\mathcal{F}_j(\xi,t)$

Becomes inverse Mellin moment in forward limit!

$$f(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} x^{-s} f_s ds$$

Lattice Data

• There are four twist-2 GPDs for quarks, and their moments can be written as

$$\int_{-1}^{+1} dx x^{n-1} H(x,\xi,t) = \sum_{i=0,\text{even}}^{n-1} (-2\xi)^i A_{ni}(t) + (-2\xi)^n C_{n0} \left(Q^2\right)^{i-1} dx x^{n-1} E(x,\xi,t) = \sum_{i=0,\text{even}}^{n-1} (-2\xi)^i B_{ni}(t) - (-2\xi)^n C_{n0} \left(Q^2\right)^{i-1} dx x^{n-1} E(x,\xi,t) = \sum_{i=0,\text{even}}^{n-1} (-2\xi)^i B_{ni}(t) - (-2\xi)^n C_{n0} \left(Q^2\right)^{i-1} dx x^{n-1} E(x,\xi,t) = \sum_{i=0,\text{even}}^{n-1} (-2\xi)^i B_{ni}(t) - (-2\xi)^n C_{n0} \left(Q^2\right)^{i-1} dx x^{n-1} E(x,\xi,t) = \sum_{i=0,\text{even}}^{n-1} (-2\xi)^i B_{ni}(t) - (-2\xi)^n C_{n0} \left(Q^2\right)^{i-1} dx x^{n-1} E(x,\xi,t) = \sum_{i=0,\text{even}}^{n-1} (-2\xi)^i B_{ni}(t) - (-2\xi)^n C_{n0} \left(Q^2\right)^{i-1} dx x^{n-1} E(x,\xi,t) = \sum_{i=0,\text{even}}^{n-1} (-2\xi)^i B_{ni}(t) - (-2\xi)^n C_{n0} \left(Q^2\right)^{i-1} dx x^{n-1} E(x,\xi,t) = \sum_{i=0,\text{even}}^{n-1} (-2\xi)^i B_{ni}(t) - (-2\xi)^n C_{n0} \left(Q^2\right)^{i-1} dx x^{n-1} E(x,\xi,t) = \sum_{i=0,\text{even}}^{n-1} (-2\xi)^i B_{ni}(t) - (-2\xi)^n C_{n0} \left(Q^2\right)^{i-1} dx x^{n-1} E(x,\xi,t) = \sum_{i=0,\text{even}}^{n-1} (-2\xi)^i B_{ni}(t) - (-2\xi)^n C_{n0} \left(Q^2\right)^{i-1} dx x^{n-1} E(x,\xi,t) = \sum_{i=0,\text{even}}^{n-1} (-2\xi)^i B_{ni}(t) - (-2\xi)^n C_{n0} \left(Q^2\right)^{i-1} dx x^{n-1} E(x,\xi,t) = \sum_{i=0,\text{even}}^{n-1} (-2\xi)^i B_{ni}(t) - (-2\xi)^n C_{n0} \left(Q^2\right)^{i-1} dx x^{n-1} E(x,\xi,t) = \sum_{i=0,\text{even}}^{n-1} (-2\xi)^i B_{ni}(t) - (-2\xi)^n C_{n0} \left(Q^2\right)^{i-1} dx x^{n-1} E(x,\xi,t) = \sum_{i=0,\text{even}}^{n-1} (-2\xi)^i B_{ni}(t) - (-2\xi)^n C_{n0} \left(Q^2\right)^{i-1} dx x^{n-1} E(x,\xi,t) = \sum_{i=0,\text{even}}^{n-1} (-2\xi)^i B_{ni}(t) + \sum_{i=0,\text{even}}^{n-1} (-2\xi)^i B_{ni}$$

are related to the generalized form factors (GFFs).

• Thanks to large momentum effective theory (LaMET), GPDs can also be explicitly computed over x at fixed (t, ξ)

GPD Fit to Lattice Constraints

Separation of small and large x

$$f^+(x) = f(x) + \bar{f}(x) = f_{\text{val}}(x) + 2f_{\text{sea}}(x)$$

Form factors calculated on lattice only have the positive moments

$$f_n(t) = \int \mathrm{d}x x^n f(x,$$

which are dominated by valence contributions

$$\langle x \rangle_{u_v} = 0.325 \qquad \langle x \rangle_{\bar{u}} = 0.02$$

$$\int dx x^n f_{\text{val}}(x, t)$$

On the other hand, CFFs are associated with the inverse moments

$$\mathcal{F}_{CFF}(\xi,t) = \int \mathrm{d}x \left(\frac{1}{x-\xi+i\epsilon} + \frac{1}{x+\xi+i\epsilon}\right) F(x,\xi,t)$$

The moments calculations on lattice are mostly constraining the valence distributions.

Compton Form Factors in GUMP

Observables: $\sigma_{\text{DVCS}} = \sigma_{\text{DVCS}}(x_B, t, Q^2, E_b, \phi, \mathcal{F}_i(x_B, t, Q^2))$

• WE can simply express CFFs directly in moment space because the x-integration can be done explicitly!

$$\mathcal{H}_{CFF}(\xi,t) = -Q_q^2 \int_{-1}^{1} \mathrm{d}x \left(\frac{1}{x-\xi+i0} + \frac{1}{x+\xi-i0} \right) H(x,\xi,t) \\ \mathcal{H}_{CFF}(\xi,t) = \frac{1}{2i} \int_{c-i\infty}^{c+i\infty} dj \xi^{-j-1} \left[i + \tan\left(\frac{\pi j}{2}\right) \right] \mathbb{C}_j \mathcal{H}_j(\xi,t)$$

$$\mathcal{F}_i = \mathcal{H}, \mathcal{E}, \cdots$$

 $\mathbb{C}_{j} \stackrel{\text{LO}}{=} \frac{2^{j+1}\Gamma(j+5/2)}{\Gamma(3/2)\Gamma(j+3)} \qquad \mathcal{H}_{j} = \mathcal{H}_{j}(\xi,t;N_{q,k},\alpha_{q,k},\beta_{q,k},\alpha_{q,k}')$

• Consequently, our CFFs will carry our GUMP parameters, which can be fit to real DVCS cross section data

Measurements

JLab 12 GeV

Electron Ion Collider (EIC)

Global DVCS Data

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	No.	Collab.	Year	Observable	Kinematic dependence	No. of points used / all	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	HERMES	2001	A_{LU}^+	φ	10 / 10	
32008 A_{UI}^{CP} M_{UI}^{CP} M_{UI}^{CP} M_{UI}^{CP} M_{UI}^{CP} M_{UI}^{CP} M_{UI}^{CP} 	2		2006	$A_C^{\cos i\phi}$ $i=1$	t	4 / 4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3		2008	$\begin{array}{cc} A_C^{\cos i\phi} & i = 0, 1 \\ \sin(\phi - \phi_i)\cos i\phi & i = 0, 1 \end{array}$	$x_{ m Bj}$	18 / 24	• HERMES contains many observables,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				$\begin{array}{ll} A_{UT,\text{DVCS}}^{sin(\phi-\phi_S)\cos i\phi} & i=0\\ rin(\phi-\phi_S)\cos i\phi \end{array}$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				$A_{UT,I}^{inin(\phi-\phi_S)\cos i\phi} \qquad i=0,1$			but somewhat poor statistics
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				$A_{UT,I}^{cos(\varphi-\varphi_S)sinv\varphi} i=1$		05 1 10	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4		2009	$A_{LU,I}^{init}$ $i = 1, 2$	$x_{ m Bj}$	35 / 42	
$\begin{array}{ccccc} & & & & & & & & & & & & & & & & &$				$\begin{array}{cc} A_{LU, \text{DVCS}} & i = 1 \\ A^{\cos i\phi} & i = 0, 1, 2 \end{array}$	2		• II AD has bigh lunging siture and much
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5		2010	$A_C = i = 0, 1, 2, $ $A^{+, \sin i\phi} = i = 1, 2, 3,$	3 710:	18 / 24	 JLAB has high luminosity and much
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0		2010	$A_{UL}^{+,\cos i\phi}$ $i = 0, 1, 2, 0$	20 BJ	10 / 24	le attain attation levet an famile aler the
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6		2011	$A_{LT \text{ DVCS}}^{\cos(\phi - \phi_S)\cos i\phi} i = 0, 1$	$x_{\rm Bi}$	24 / 32	detter statistics, but so far facks the
$\begin{array}{ccccc} & A_{LTI}^{con(d-q_{d}) \cos i\varphi} & i=0,1,2 \\ & A_{LU,1}^{con(d-q_{d})} \sin i\phi} & i=1,2 \\ & A_{LU,1}^{con(d-q_{d})} & i=1,2 \\ & A_{LU,1}^{con(d-q_{d})} & i=1,2 \\ & A_{LU,0}^{con(d-q_{d})} & i=1,2 \\ & A_{LU}^{con(d-q_{d})} & i=1,2 \\ & A_{LU$				$A_{LT \text{ DVCS}}^{\sin(\phi - \phi_S) \sin i\phi} \qquad i = 1$	2		$1_{\text{A}} = 1_{\text{A}} $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				$A_{LT,I}^{\cos(\phi-\phi_S)\cos i\phi}$ $i=0,1,2$			breadth of DVCS observables
7 2012 $A_{LU,I}^{sin i \phi}$ $i = 1, 2$ x_{Bj} $35 / 42$ $A_{LU,DVCS}^{sin i \phi}$ $i = 1$ $A_{LU,DVCS}^{cos i \phi}$ $i = 1$ $A_{C}^{cos i \phi}$ $i = 0, 1, 2, 3$ • Much more data is expected over nex 9 2006 $A_{UL}^{cos i \phi}$ $i = 1, 2$ $ 2 / 2$ • Much more data is expected over nex 9 2006 $A_{UL}^{cos i \phi}$ $i = 1, 2$ $ 2 / 2$ • 10 years with JLAB 12 GeV (& 24 GeV?) 10 2008 A_{LU} ϕ $22 / 33$ • 10 years with JLAB 12 GeV (& 24 GeV?) 11 2009 A_{LU} ϕ $311 / 497$ • as well as the highly anticipated EIC 13 2015 $d^4 \sigma_{UU}$ ϕ $228 / 228$ as well as the highly anticipated EIC 14 Hall A 2015 $\Delta d^4 \sigma_{LU}$ ϕ $276 / 358$ 5 2017 $\Delta d^4 \sigma_{UU}$ ϕ $276 / 358$ 5 5 $6^3 \sigma_{UU}^{cos}$ $5 / 2/ 4$ $6^3 \sigma_{UU}^{cos}$ $6^3 \sigma_{UU}^{cos}$ $6^3 \sigma_{UU}^{cos}$ $6^3 \sigma_{UU}^{cos}$ $6^3 \sigma_{UU}^{cos}$ $6^3 \sigma_{UU}^{cos}$ </td <td></td> <td></td> <td></td> <td>$A_{LT,I}^{\widehat{\sin}(\widehat{\phi} - \phi_S) \sin i\phi} i = 1, 2$</td> <td></td> <td></td> <td></td>				$A_{LT,I}^{\widehat{\sin}(\widehat{\phi} - \phi_S) \sin i\phi} i = 1, 2$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7		2012	$A_{LU,\mathrm{I}}^{\sin i\phi}$ $i=1,2$	$x_{ m Bj}$	35 / 42	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				$A_{LU,\mathrm{DVCS}}^{\sin i\phi}$ $i=1$			
8 CLAS 2001 $A_{LU}^{-10mtop}$ $i = 1, 2$ - 0 / 2 9 2006 $A_{UU}^{-10mtop}$ $i = 1, 2$ - 2 / 2 10 10 2008 $A_{UU}^{-10mtop}$ $i = 1, 2$ - 2 / 2 10 10 2008 $A_{UU}^{-10mtop}$ $i = 1, 2$ - 2 / 2 10 10 years with JLAB 12 GeV (& 24 GeV?) 11 2009 A_{LU}^{-1} ϕ 22 / 33 10 years with JLAB 12 GeV (& 24 GeV?) a 12 2015 $A_{LU}^{-1}, A_{UL}^{-1}, A_{LL}^{-1}$ ϕ 311 / 497 a s well as the highly anticipated EIC 13 2015 $d^4\sigma_{UU}^{-1}$ ϕ 228 / 228 a s a s well as the highly anticipated EIC 14 Hall A 2017 $\Delta d^4\sigma_{LU}^{-1}$ ϕ 276 / 358 a a 16 COMPASS 2018 $d^3\sigma_{UU}^{+1}$ t $2 / 4$ a				$A_C^{\cos i\phi} \qquad i = 0, 1, 2,$	3		 Much more data is expected over next
92006 A_{UL} $i = 1, 2$ $ 2/2$ 1010 years with JLAB 12 GeV (& 24 GeV?102008 A_{LU}^{-} ϕ 283 / 73710 years with JLAB 12 GeV (& 24 GeV?112009 A_{LU}^{-} ϕ 22 / 3313122015 $A_{LU}^{-}, A_{UL}^{-}, A_{LL}^{-}$ ϕ 311 / 497311 / 497132015 $d^4\sigma_{LU}^{-}$ ϕ 228 / 228as well as the highly anticipated EIC14Hall A2015 $\Delta d^4\sigma_{LU}^{-}$ ϕ 276 / 358as well as the highly anticipated EIC152017 $\Delta d^4\sigma_{LU}^{-}$ ϕ 276 / 358as well as the highly anticipated EIC16COMPASS2018 $d^3\sigma_{UU}^{+}$ t2 / 4as well as the highly anticipated EIC	8	CLAS	2001	$\begin{array}{ccc} A_{LU}^{-,\sini\phi} & i=1,2\\ A^{-,\sini\phi} & i=1,2 \end{array}$		0/2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 10		2006	A_{UL} $i = 1, 2$		2 / 2	10 years with JLAB 12 GeV (& 24 GeV?)
12 2015 $A_{LU}^-, A_{UL}^-, A_{LL}^ \phi$ 311 / 497 as well as the highly anticipated EIC 13 2015 $d^4 \sigma_{UU}^ \phi$ 1333 / 1933 14 Hall A 2015 $\Delta d^4 \sigma_{LU}^ \phi$ 228 / 228 15 2017 $\Delta d^4 \sigma_{LU}^ \phi$ 276 / 358 16 COMPASS 2018 $d^3 \sigma_{UU}^+$ t 2 / 4	11		2009		φ φ	22 / 33	
13 2015 $d^4 \sigma_{UU}^ \phi$ 1333 / 1933 14 Hall A 2015 $\Delta d^4 \sigma_{LU}^ \phi$ 228 / 228 15 2017 $\Delta d^4 \sigma_{LU}^ \phi$ 276 / 358 16 COMPASS 2018 $d^3 \sigma_{UU}^{\pm}$ t 2 / 4	12		2015	$A_{LU}^{-}, A_{UL}^{-}, A_{LL}^{-}$	φ	311 / 497	as well as the highly anticipated EIC
14 Hall A 2015 $\Delta d^4 \sigma_{LU}^ \phi$ 228 / 228 15 2017 $\Delta d^4 \sigma_{LU}^ \phi$ 276 / 358 16 COMPASS 2018 $d^3 \sigma_{UU}^{\pm}$ t 2 / 4	13		2015	$d^4 \sigma_{UU}^-$	ϕ	1333 / 1933	
15 2017 $\Delta d^4 \sigma_{LU}^ \phi$ 276 / 358 16 COMPASS 2018 $d^3 \sigma_{UU}^{\pm}$ t 2 / 4	14	Hall A	2015	$\Delta d^4 \sigma_{LU}^-$	ϕ	228 / 228	
10 COMPASS 2018 $d^2\sigma_{\overline{U}U}$ t 2/4	15	COMPAGE	2017	$\Delta d^{a} \sigma_{LU}$	¢	276 / 358	
17 ZEUS 2009 $d^3\sigma_{1}^+$ t 4/4	17	ZEUS	2018	$d^3\sigma^+_{UU}$	t t	4/4	
18 H1 2005 $d^3\sigma_{UU}^+$ t 7/8	18	H1	2005	$d^3\sigma^+_{III}$	t	7/8	
19 2009 $d^3 \sigma_{UU}^{\pm}$ t 12/12	19		2009	$d^3\sigma_{UU}^{\pm}$	\mathbf{t}	12 / 12	

2624 / 3996

Conclusions

Nucleon Spin: 1.

- 3rd order: measure the twist-3 GPDs of AM

• JLab and EIC will be essential in solving the nucleon spin structure High CM energy, high luminosity (polarized) electron/positron beams scattering off polarized nucleons needed in DIS, SIDIS, DVCS, DVMP, etc.

$J_q + J_g = \frac{1}{2}$ $\frac{1}{2}\Delta q + \Delta G + l_q^z + l_q^z = \frac{1}{2}$

• 1st order: reduce uncertainty of Spin PDFs $g_1(x)$ and $\Delta G(x)$

• 2nd order: measure twist-2 GPDs H & E for quark and gluon

Global Analysis of GPDs: 2.

- extraction of either CFFs
- energies and for multiple polarization observables (UU, LU, UL, LL, UT, LT)
- also naturally incorporate lattice data

 $\chi_{\text{fit}}^2(N_j, \alpha_j, \beta_j, \alpha'_j) = \sum_i \frac{(O_i - E_i)^2}{\delta_i^2}$ Lattice GFFs Lattice GPDs

• One needs a sufficient number of unique (non degenerate) observables to find a stable

• This is achieved by fitting harmonic dependence of DVCS cross section for multiple beam

• One can model GPDs using universal moment parameterization, which also allows one to

.