# **& TRIUMF**

First Principles Calculations of  $p+{}^{7}{\rm Li}$  Radiative Capture (and the X17 anomaly)

**Peter Gysbers** P. Navrátil, C. Hebborn, G. Hupin, K. Kravvaris, S. Quaglioni



CAP Congress: June 6, 2022



### Radiative Capture  $A + B \rightarrow C + \gamma$

- $\blacktriangleright$  Notation:  $B(A, \gamma)C$
- $\triangleright$  A nuclear reaction that often occurs in astrophysics:
	- Stellar burning:  $d(p, \gamma)^3$ He,  ${}^3\textrm{He}(\alpha, \gamma)^7$ Be, ...
	- Big Bang Nucleosynthesis:  $d(p, \gamma)^3$ He,  ${}^4\textrm{He}(d, \gamma)^6$ Li, ...
	- Search for new physics:  ${}^{7}\text{Li}(p, \gamma)^{8}\text{Be}$ ,  ${}^{3}\text{H}(p, \gamma)^{4}\text{He}$

More Notation:  $d = {}^{2}H$  $\alpha = {}^4He$ 



### Calculating Radiative Capture

To calculate the rate of reaction (cross section) we need:

- initial wavefunction:  $|\Psi_i\rangle$  ( $A + B$ )
- $\blacktriangleright$  final wavefunction:  $|\Psi_f\rangle$  (C)
- **•** photon interaction (electromagnetic operator):  $\hat{O}_\gamma$

We need to calculate the square of the transition matrix elements:

$$
\sigma \sim \sum_{if} |\bra{\Psi_f} \hat{O}_\gamma \ket{\Psi_i}|^2
$$

Bound States: 
$$
|\Psi_f\rangle = \left|J_f^{\pi_f}T_f\right\rangle
$$

Eigenstate of the nuclear Hamiltonian:

$$
H^A\ket{\Psi_k}=E_k\ket{\Psi_k}, \text{ where } H^A=\sum_i^A T_i+\sum_{i
$$

Bound States: 
$$
|\Psi_f\rangle = \left|J_f^{\pi_f}T_f\right\rangle
$$

Eigenstate of the nuclear Hamiltonian:

$$
H^A \left| \Psi_k \right\rangle = E_k \left| \Psi_k \right\rangle, \text{ where } H^A = \sum_i^A T_i + \sum_{i < j} V_{ij}^{NN} + \sum_{i < j < f} V_{ijf}^{3N}
$$

#### The No-Core Shell Model (NCSM)

Expand in anti-symmetrized products of harmonic oscillator single-particle states:

$$
\left|\Psi_{k}\right\rangle =\sum_{N=0}^{N_{max}}\sum_{j}c_{Nj}^{k}\left|\Phi_{Nj}\right\rangle
$$

Convergence to exact as  $N_{max} \rightarrow \infty$ 



#### Unbound (Continuum) States:  $|\Psi_i\rangle = \Big|$  $\left| \left[ \ket{\Psi_A} \ket{\Psi_B} \psi(\vec{r}_A - \vec{r}_B) \right]^{(J_i^{\pi_i} T_i)} \right\rangle$

- $\blacktriangleright$  The incoming state is made of distinct clusters with relative motion
- $\blacktriangleright$  Harmonic oscillator states cannot describe the tail of the wavefunction (long-range physics)
- $\triangleright$  A method beyond the NCSM is needed for scattering and reactions

#### Unbound (Continuum) States:  $|\Psi_i\rangle = \Big|$  $\left| \left[ \ket{\Psi_A} \ket{\Psi_B} \psi(\vec{r}_A - \vec{r}_B) \right]^{(J_i^{\pi_i} T_i)} \right\rangle$

- $\blacktriangleright$  The incoming state is made of distinct clusters with relative motion
- $\blacktriangleright$  Harmonic oscillator states cannot describe the tail of the wavefunction (long-range physics)
- $\triangleright$  A method beyond the NCSM is needed for scattering and reactions
- No-Core Shell Model with Continuum (NCSMC)
	- $\triangleright$  Solution: extend the NCSM basis!

$$
\Psi^{(A)} = \sum_{\lambda} c_{\lambda} \left| \left( A \right) \sum_{\nu} \lambda \right| + \sum_{\nu} \int d\vec{r} \, \gamma_{\nu}(\vec{r}) \, \hat{A}_{\nu} \left| \sum_{\substack{(A-a) \\ (A-a)}}^{\vec{r}} \hat{B}_{\mu} \right|, \nu \right\rangle
$$

### NCSMC Equations

$$
H\Psi^{(A)} = E \Psi^{(A)}
$$
\n
$$
\Psi^{(A)} = \sum_{\lambda} c_{\lambda} |^{(A)} \mathbf{S}_{\lambda} \cdot \lambda + \sum_{\nu} \int d\vec{r} \gamma_{\nu}(\vec{r}) \hat{A}_{\nu} |_{(A-a)} \vec{r} \cdot \mathbf{S}_{\nu}
$$
\n
$$
\left( \frac{E_{\lambda}^{NCSM} \delta_{\lambda \lambda}}{h} \right) \left( \frac{I_{(A)} \mathbf{S}_{\lambda} |_{(A)} \left| H \hat{A}_{\nu} \right|_{(A-a)} \right)} \vec{r} \cdot \mathbf{S}_{\lambda \lambda}
$$
\n
$$
\left( \frac{I_{NCSM}}{h} \right) \left( \frac{I_{NCSM}}{g} \right) = E \left( \frac{I_{NCSM}}{g} \mathbf{A}_{\nu} |_{(A)} \right) \left( \frac{I_{(A)} \mathbf{S}_{\lambda} |_{(A)} \left| \frac{I_{(A)} \
$$

 $\left|\left\langle \left( \begin{matrix} r^1\\ A \end{matrix} \right| \right| A \right|, H \left| \left\langle A \right| \right| \left| \left\langle \left( \begin{matrix} r^1\\ A \end{matrix} \right| \right| \left\langle A-a \right| \right| \right|$ 

 $\left|\hat{A}_{\nu}\hat{A}_{\nu}\right|\left|\overbrace{a}_{(A-a)}^{r}\right|$ 

 $(a)$  $(a)$ 

# NCSMC for  $p + {}^{7}\text{Li}$  ( ${}^{8}\text{Be}$ )

$$
\Psi^{(8)}_{\text{NCSMC}} = \sum_\lambda c_\lambda \left|^8\!\text{Be}, \lambda \right\rangle + \sum_\nu \int \text{d}r \gamma_\nu(r) \hat{A}_\nu \left|^7\text{Li} + p, \nu \right\rangle + \sum_\mu \int \text{d}r \gamma_\mu(r) \hat{A}_\mu \left|^7\!\text{Be} + n, \mu \right\rangle
$$

#### Process:

- Solve NCSM for each constituent nucleus:  ${}^{8}$ Be,  ${}^{7}$ Li and  ${}^{7}$ Be
	- $\blacktriangleright$  30 eigenstates from  ${}^{8}$ Be
	- $\triangleright$  5 eigenstates each from  ${}^{7}$ Li and  ${}^{7}$ Be
- $\blacktriangleright$  Solve NCSMC for  $c_{\lambda}(E), \gamma_{\nu}(r, E) \to \Psi(E)$
- **IGROVICHT:** Cross-section depends on transition matrix elements e.g.  $\langle \Psi(E_0)| M1 | \Psi(E)\rangle$

#### **Results**

- $\blacksquare$ <sup>8</sup>Be Structure
- $\Box$  Scattering:  $^7\mathrm{Li}(p,p)^7\mathrm{Li}$
- $\Box$  Transfer Reactions:  ${\rm ^7Li}(p,n){\rm ^7Be},\,{\rm ^7Be}(n,p){\rm ^7Li}$
- **Radiative Capture:**  ${}^{7}\text{Li}(p, \gamma){}^{8}\text{Be}$
- **B** Search for new physics:  ${}^{7}\text{Li}(p, X)^{8}\text{Be}$

## <sup>8</sup>Be Structure

Calculations of  ${}^{8}$ Be "bound" states (w.r.t.  ${}^{7}$ Li + p threshold) are improved by inclusion of the continuum  $(N_{max} = 9)$ 





- Energies likely too high due to neglected  $\alpha + \alpha$  breakup
- $\blacktriangleright$  Matches experiment well, except the 3rd  $2^+$  is still slightly above the  ${}^{7}$ Li + p threshold

# <sup>8</sup>Be Structure

Calculations of  ${}^{8}$ Be "bound" states (w.r.t.  ${}^{7}$ Li + p threshold) are improved by inclusion of the continuum  $(N_{max} = 9)$ 





 $\blacktriangleright$  Matches experiment well, except the 3rd  $2^+$  is still slightly above the  ${}^{7}$ Li + p threshold



#### Eigenphase-shift Results (positive parity)





Additional resonances are seen compared to TUNL data

#### Radiative Capture





Data: Zahnow et al Z.Phys.A **351** 229-236 (1995)

#### Radiative Capture (cont.)



Data: Zahnow et al Z.Phys.A **351** 229-236 (1995)

# The X17 Anomaly in  $p + {}^{7}\text{Li} \rightarrow {}^{8}\text{Be} + e^{+}e^{-}$

- ►  ${}^{7}\text{Li}(p,e^+e^-){}^{8}\text{Be}$  @ATOMKI (Hungary)
- $\blacktriangleright$  The decay of  ${}^{8}$ Be 1<sup>+</sup> excited states produces electron-positron pairs



Feng PRD **95**, 035017 (2017)

# The X17 Anomaly in  $p + {}^{7}\text{Li} \rightarrow {}^{8}\text{Be} + e^{+}e^{-}$

Firak, Krasznahorkay, et al EPJ Web of Conferences **232 04005 (2020)**

- $\triangleright$  The angle  $\theta$  between the electron and positron was measured
- $\blacktriangleright$  Minimum angle from a massive intermediate particle:  $\theta \simeq \sin^{-1} (\frac{m_X}{E_X})$  $\frac{m_X}{E_X}$
- $\blacktriangleright$  Bump could be explained by 17 MeV bosons decaying to  $e^+e^-$
- Can *ab initio* nuclear physics help interpret the anomaly?



### Pair Production Distribution

- $\triangleright$  Our calculations (based on 2106.06834) under(over)-predict low(high) angles (possible background contamination or missing E1-M1 interference)
- ▶ Ongoing and planned experiments at Orsay and Montreal will provide an independent verification of the anomaly
- $\triangleright$  New ATOMKI data just published (2205.07744), analysis in progress



# Preliminary  ${}^{7}\text{Li}(p, X){}^{8}\text{Be}$  Cross-sections



#### Summary

- $\blacktriangleright$  NCSMC successfully describes the spectrum of  ${}^{8}$ Be including the  $1^+$  resonances
- $\blacktriangleright$  Calculations of  ${}^{7}{\rm Li}(p,\gamma){}^{8}{\rm Be}$  radiative capture match data

**Outlook** 

- ► Compare  ${}^{7}\text{Li}(p,e^+e^-){}^{8}\text{Be}$  to data with  $\gamma \to e^+e^-$  operator and various  $X \to e^+e^-$  operators (e.g. axions, vector bosons, axial vector bosons)
- ► Calculations of  ${}^{3}$ H $(p,e^+e^-){}^{4}$ He are also relevant to the X17 anomaly
- $\triangleright$  Explore charge-exchange reactions relevant for nucleosynthesis:  ${}^{7}Be(n,p){}^{7}Li$ ,  ${}^{7}Li(p,n){}^{7}Be$



### Constraints on  $m<sub>x</sub>$

In the frame of the  $X$  boson the electron and positron momenta are anti-parallel. Boosted to a minimum separation angle:

$$
\theta = 2\sin^{-1}(\frac{m_X}{E_X})
$$

 $m_{N}$ - $m_{N_0}$  (MeV)

- $\triangleright$   ${}^{8}$ Be anomaly occurs in the isoscalar transition (decay of  $1^+0$  resonance)
- $\blacktriangleright$  In-between resonances in  ${}^{4}$ He
- $\blacktriangleright$  Bumps could be explained by 17 MeV bosons decaying to  $e^+e^-$



#### Exclusion Plot

Current (gray) and projected sensitivities of future experiments

Feng **PRD 95** 035017 (2017)



#### X17 Candidate Bosons

$$
(m_X \simeq 17 \text{ MeV}, \Delta E \ge 17.2251 \text{ MeV } [^{7}\text{Li} + p],
$$
  

$$
k_X = \sqrt{\Delta E^2 - m_X^2}, k_\gamma = \Delta E
$$

Operators for  $1^+ \rightarrow 0^+$  decay (in the long-wavelength approximation)

▶ Pseudo-scalar (0<sup>-</sup>): $\langle X_P \rangle \sim \epsilon_P \left\langle \hat{S} \right\rangle k_X$ 

$$
\blacktriangleright \text{ Axial-vector } (1^+): \langle X_A \rangle \sim \epsilon_A \langle \hat{S} \rangle \sqrt{2 + \frac{m_X^2}{\Delta E^2}}
$$

- ▶ Vector (1<sup>-</sup>):  $\langle X_V \rangle \sim \epsilon_V \left< \hat{O}_\gamma \right> \frac{k_X}{k_\gamma}$  $k_{\gamma}$
- For comparison:  $\gamma$  (E1 (1<sup>-</sup>), M1 (1<sup>+</sup>), E2 (2<sup>+</sup>), etc)  $\langle E1 \rangle \sim \langle rY_1 \rangle k_{\gamma}$  $\langle M1 \rangle \sim \left(g_l \left\langle \hat{L} \right\rangle + g_s \left\langle \hat{S} \right\rangle \right) k_\gamma$



#### Input States from NCSM

$$
\Psi_{\rm NCSMC}^{(8)} = \sum_\lambda c_\lambda \left|^8{\rm Be},\lambda\right\rangle + \sum_\nu \int {\rm d}r \gamma_\nu(r) \hat{A}_\nu \left|^7{\rm Li} + p,\nu\right\rangle + \sum_\mu \int {\rm d}r \gamma_\mu(r) \hat{A}_\mu \left|^7{\rm Be} + n,\mu\right\rangle
$$

- $\blacktriangleright$  3 NCSM calculations:  $^7$ Li,  $^7$ Be and  $^8$ Be
- $\blacktriangleright \begin{array}{c} \frac{3}{2} \\ \frac{3}{2} \end{array}$ 2  $^{-}$ ,  $\frac{1}{2}$ 2  $^{-}$ ,  $\frac{7}{2}$ 2  $^{-}$ ,  $\frac{5}{2}$ 2  $^{-}$ ,  $\frac{5}{2}$ 2  $^{-}$ }<sup>7</sup>Li and <sup>7</sup>Be states in cluster basis
- $\triangleright$  15 positive and 15 negative parity states in  ${}^{8}$ Be composite state basis



TUNL Nuclear Data Evaluation Project

### Input States from NCSM

$$
\Psi_{\text{NCSMC}}^{(8)} = \sum_{\lambda} c_{\lambda} |^{8}Be, \lambda \rangle + \sum_{\nu} \int dr \gamma_{\nu}(r) \hat{A}_{\nu} |^{7}Li + p, \nu \rangle + \sum_{\mu} \int dr \gamma_{\mu}(r) \hat{A}_{\mu} |^{7}Be + n, \mu \rangle
$$
\n
$$
\Rightarrow 3 \text{ NCSM calculations: } ^{7}Li, ^{7}Be \text{ and } ^{8}Be
$$
\n
$$
\Rightarrow \left\{ \frac{3}{2}, \frac{1}{2}, \frac{1}{2}, \frac{7}{2}, \frac{5}{2}, \frac{5}{2}, \frac{5}{2} \right\} \text{ 7Li and } ^{7}Be
$$
\nstates in cluster basis\n
$$
\Rightarrow 15 \text{ positive and } 15 \text{ negative parity states}
$$
\n
$$
\Rightarrow \text{ 15 positive state basis}
$$
\n
$$
\Rightarrow \text{ 15 positive state basis}
$$
\n
$$
\Rightarrow \text{ 15 positive state basis}
$$
\n
$$
\Rightarrow \text{ 15 positive state basis}
$$
\n
$$
\Rightarrow \text{ 15 positive state basis}
$$
\n
$$
\Rightarrow \text{ 15 positive state basis}
$$
\n
$$
\Rightarrow \text{ 15 negative point} \times \text{ states}
$$
\n
$$
\Rightarrow \text{ 15 positive at the basis}
$$
\n
$$
\Rightarrow \text{ 15 positive at the basis}
$$
\n
$$
\Rightarrow \text{ 15 positive at the basis}
$$
\n
$$
\Rightarrow \text{ 15 positive at the basis}
$$
\n
$$
\Rightarrow \text{ 15 positive at the basis}
$$
\n
$$
\Rightarrow \text{ 15 positive at the basis}
$$
\n
$$
\Rightarrow \text{ 15 positive at the basis}
$$
\n
$$
\Rightarrow \text{ 15 positive at the basis}
$$
\n
$$
\Rightarrow \text{ 15 positive at the basis}
$$
\n
$$
\Rightarrow \text{ 15 positive at the basis}
$$
\n
$$
\Rightarrow \text{ 15 positive at the basis}
$$
\n
$$
\Rightarrow \text{ 15 positive at the basis}
$$
\n
$$
\Rightarrow \text{ 15 positive at the basis}
$$
\n
$$
\Rightarrow \text{ 15 positive at the basis}
$$
\n
$$
\Rightarrow \text{ 15 positive at the basis}
$$
\n
$$
\Rightarrow \text{ 15 positive at the basis}
$$
\n<math display="</math>

 $4\mathrm{He} + 4\mathrm{He}$