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Motivation

» Explore the N = Z line.
» Use magic nuclei which have complete shells of neutrons and protons.
» Focus on nucleus pairs which exhibit structure similarity under
nucleon exchange.
» The generalization of charge independence for the strong interaction to
the effective nuclear interaction providing mirror symmetry.
» Isospin-nonconserving interactions break this mirror symmetry.
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Mirror Asymmetry
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Spieker et al., Physical Review C, 2019

H. Asch (SFU) CAP 2022 June, 2022 3/26



Where to focus? SFU

» Each of these ideas are combined in the approved ®>Ni and ®°Co
experiment at ISAC-II accelerator at TRIUMF.
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re to focus? SFU

Each of these ideas are combined in the approved ®°Ni and ®°Co
experiment at ISAC-II accelerator at TRIUMF.

55Ni and ®°Co are:

» identical under a single nucleon exchange,
» adjacent to the doubly magic %°Ni,
» and located alongside the N = Z line.

Where production is achieved via fusion evaporation reaction:
» 20Na(*°Ca,ap)®Ni
» 2ONe(*0Ca,ap)®Co
» 2ONa is a radioactive beam
» 2Ne is a stable beam.

Electromagnetic transition rates in ®>Ni and 5°Co will be measured
and compared using Doppler-Shift lifetime measurements
implemented using TIP and TIGRESS facilities.

H. Asch (SFU) CAP 2022 June, 2022 4/26



Fusion Evaporation
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Doppler-Shift Attenuation Method SFU
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Doppler-Shift Attenuation Method SFU
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» Useful for lifetimes on the fs to ps scale.
» Nucleus of interest recoils into target backing to slow.

» Higher density backing for shorter lifetimes or higher velocities.
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TRIUMF-ISAC Gamma-Ray Escape Supp. Spec. SFU

» State-of-the art gamma-ray spectrometer.
» 16 Compton-suppressed Clover detectors comprising of 4 High Purity
Germanium (HPGe) crystals, 64 HPGe crystals in total.

» Operational with auxiliary detectors: SPICE, SHARC, BAMBINO,
DESCANT, and TIP.
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TIGRESS Integrated Plunger

» Allows for Doppler-shift lifetime measurements in Recoil Distance
Method (RDM) and Doppler Shift Attenuation Method (DSAM)
configurations.
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TIGRESS Integrated Plunger

» Allows for Doppler-shift lifetime measurements in Recoil Distance
Method (RDM) and Doppler Shift Attenuation Method (DSAM)
configurations.

» DSAM Target Wheel

» Uses 2mm and bmm apertures and a scintillating phosphor target for
tuning.
» Has two aluminum "target leaves” for affixing target foils.
» Six positions; one for removal and another for beam avoidance.
» RDM Plunger
» Uses a capacitance feedback loop to actively monitor and control the
size of the target/stopper gap for recoil in-flight decay.
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Target Wheel and TIP Accessories

» Top: target wheel.

» Bottom: the S3-type annular silicon detector (left), the silicon PIN
diode wall (middle), and the CsI(TI) scintillator wall (right)
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Cesium lodide Ball

» Allows to identify products of fusion evaporation raction while
suppressing other reaction channels like Coulomb excitation or elastic
scattering.
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Cesium lodide Ball

» Allows to identify products of fusion evaporation raction while
suppressing other reaction channels like Coulomb excitation or elastic
scattering.

» Enables time coincidence measurements between light charged ions
and gamma-rays detected in TIGRESS.

» The ball has 128 detectors for almost 47 coverage with increased
segmentation at forward angles.

» Products tend to be Lorentz boosted toward forward angles.
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Experimental Goals SFU
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» Identify the energy, spins, and parities of excited states in ®>>Ni beyond
those previously reported.

» Establish Mirror Energy Differences with comparison of >°Ni against
%5 Co.

» Provide reliable data for Shell Model calculations for f75 hole states
near 2°Ni.

» Measure EM transition rates for the states in >>Ni and >°Co.
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Experimental Goals SFU

» Identify the energy, spins, and parities of excited states in ®>>Ni beyond
those previously reported.

» Establish Mirror Energy Differences with comparison of >°Ni against
%5 Co.

» Provide reliable data for Shell Model calculations for f75 hole states
near 2°Ni.

» Measure EM transition rates for the states in >>Ni and >°Co.

» This will require measuring:

» Energies of excited states.
» Angular correlations and polarization of -rays.
» Lifetimes via DSAM
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GEANT4 SFU

» The required framework for TIP/TIGRESS simulations already exists
and will be used to infer observations from experimental data.
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GEANT4 SFU

» The required framework for TIP/TIGRESS simulations already exists
and will be used to infer observations from experimental data.

» The beam type/energy, target type, desired reaction, TIGRESS, Csl
Ball, TIP and DAQ properties can all be factored in.

» Simulation parameters:
» Projectile: 2°Na at 100 MeV
Target: “°Ca with 1.91 mg/cm? (1.23 um) thickness
Backing: 97Au with 28.76 mg/cm? (14.9 um) thickness
Reaction products: «, p, and 2882 keV ~-ray
Lifetime varied: 10, 20, 50, 100, 200, 400, 600, 800, 1000 fs
Q Values: 11.788 MeV for formation, and net —3.968 MeV for
evaporation
» Quality of simulation statistics improve with longer run times.

vVvvyyVvyy
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Line Shapes for Varying Lifetimes
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Centroid Change with Ring Number
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Preparations for the ®>>Co Experiment

» Literature of previous >>Co experiments was reviewed.
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Preparations for the ®>>Co Experiment

» Literature of previous >>Co experiments was reviewed.

» TIP, Csl Ball, and associated electronics were installed on TIGRESS
beamline.

» TIP was aligned with the beam line and TIGRESS.

» Production of high quality *°Ca targets has been initiated.
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TIP Alignment
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Cosmic Ray test of the Csl Ball SFU
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Cosmic Ray test of the Csl Ball SFU

TIP position

— TIP position
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» Absorber foils prevent using sources; cosmic rays used instead.

» Roughly 20 mV peak-to-peak noise with —70 V bias.

» 126 detectors operational with detector 34 missing while detector 93
is undercounting.
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20Ne beam delivery to TIP

VLC media player VLC media player

H. Asch (SFU) CAP 2022 June, 2022 18/26



TIP/TIGRESS real time event selection

TIP-TIGRESS multiplicity

TIGRESS multiplicity (suppressed)

9 10
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TIGRESS multplicty (suppressed)

s 9 K
TIP multplcity

» All (top) and TIP-TIP-Ge-Ge (bottom) events.
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Identification of Reaction Channels

Addback Energy (1p1a gated)
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Calcium Target Making

» Calcium target is critical to exploring N = Z nuclei:
» Heaviest stable N = Z target.
» Allows for exploring heavy N = Z nuclei.
» Extremely vulnerable to oxidization.
» Oxygen reaction channels can dominate Calcium reaction channels.

H. Asch (SFU) CAP 2022 June, 2022 21/26



Calcium Target Making

» Calcium target is critical to exploring N = Z nuclei:

» Heaviest stable N = Z target.

» Allows for exploring heavy N = Z nuclei.

» Extremely vulnerable to oxidization.

» Oxygen reaction channels can dominate Calcium reaction channels.

» Target production is a delicate process:

» Begin by manually rolling a gold foil (9.4 mg/cm? for this experiment).
Epoxy the foil to a target frame.
Evaporate a thin adhesive layer onto the foil (~ 0.1 mg/cm?).
Evaporate the calcium (~ 0.15mg/cm?).
Protect the calcium with a layer of gold (~ 0.25 mg/cm?).
Quickly affix the target to the wheel, cable the diagnostic tools, and
secure everything in the beam line.

vVvVvyyvyy
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Evaporation Chamber Exterior
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Evaporation Chamber Interior
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Ratio of Oxygen to Calcium reaction rates SFU

» Oxygen content is difficult to estimate, nuclear reactions provide a
reliable diagnostics but require beam access.

H. Asch (SFU) CAP 2022 June, 2022 24 /26



Ratio of Oxygen to Calcium reaction rates SFU

» Oxygen content is difficult to estimate, nuclear reactions provide a
reliable diagnostics but require beam access.

» An approximate mid-experiment approach is to compare the area of
gamma peaks for certain reaction channels.

H. Asch (SFU) CAP 2022 June, 2022 24 /26



Ratio of Oxygen to Calcium reaction rates SFU

» Oxygen content is difficult to estimate, nuclear reactions provide a
reliable diagnostics but require beam access.

» An approximate mid-experiment approach is to compare the area of
gamma peaks for certain reaction channels.
» Dominant channels 54Fe and 3'P were used.

H. Asch (SFU) CAP 2022 June, 2022 24 /26



Ratio of Oxygen to Calcium reaction rates SFU

» Oxygen content is difficult to estimate, nuclear reactions provide a
reliable diagnostics but require beam access.

» An approximate mid-experiment approach is to compare the area of

gamma peaks for certain reaction channels.
» Dominant channels >*Fe and 3P were used.

» Process is as follows:

H. Asch (SFU) CAP 2022 June, 2022 24 /26



Ratio of Oxygen to Calcium reaction rates SFU

» Oxygen content is difficult to estimate, nuclear reactions provide a
reliable diagnostics but require beam access.

» An approximate mid-experiment approach is to compare the area of
gamma peaks for certain reaction channels.
» Dominant channels 54Fe and 3'P were used.

» Process is as follows:
» Fit known peaks to find their area.

H. Asch (SFU) CAP 2022 June, 2022 24 /26



Ratio of Oxygen to Calcium reaction rates SFU

» Oxygen content is difficult to estimate, nuclear reactions provide a
reliable diagnostics but require beam access.

» An approximate mid-experiment approach is to compare the area of
gamma peaks for certain reaction channels.
» Dominant channels 54Fe and 3'P were used.

» Process is as follows:
» Fit known peaks to find their area.
» Divide out the predicted ratio of the total cross sections.

H. Asch (SFU) CAP 2022 June, 2022 24 /26



Ratio of Oxygen to Calcium reaction rates SFU

» Oxygen content is difficult to estimate, nuclear reactions provide a
reliable diagnostics but require beam access.

» An approximate mid-experiment approach is to compare the area of
gamma peaks for certain reaction channels.
» Dominant channels 54Fe and 3'P were used.

» Process is as follows:
» Fit known peaks to find their area.
» Divide out the predicted ratio of the total cross sections.
» Factor out detector efficiencies.

H. Asch (SFU) CAP 2022 June, 2022 24 /26



Ratio of Oxygen to Calcium reaction rates SFU

» Oxygen content is difficult to estimate, nuclear reactions provide a
reliable diagnostics but require beam access.

» An approximate mid-experiment approach is to compare the area of
gamma peaks for certain reaction channels.
» Dominant channels 54Fe and 3'P were used.

» Process is as follows:
» Fit known peaks to find their area.
» Divide out the predicted ratio of the total cross sections.
» Factor out detector efficiencies.
» Divide the 3P result by the sum of the two results to get a ratio.
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Ratio of Oxygen to Calcium reaction rates SFU

» Oxygen content is difficult to estimate, nuclear reactions provide a
reliable diagnostics but require beam access.

» An approximate mid-experiment approach is to compare the area of
gamma peaks for certain reaction channels.
» Dominant channels 54Fe and 3'P were used.

» Process is as follows:
» Fit known peaks to find their area.
» Divide out the predicted ratio of the total cross sections.
» Factor out detector efficiencies.
» Divide the 3P result by the sum of the two results to get a ratio.

» Results were:
» 1.3% at *°Ne beam energy of 60 MeV
» 2.3% at 2°Ne beam energy of 55 MeV
» 5.1% at 2°Ne beam energy of 50 MeV
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Beam energy dependence
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