

Beyond-Standard-Model Physics using Rare Eta and Eta-prime Neutral Decays

Z. Papandreou for JEF/GlueX

CAP Congress 2022 June 9, 2022

Outline

SM and BSM Searches

- Physics goals and sensitivities
- Jefferson Lab Eta Factory
 - Features and capabilities
- Status Quo
 - Hardware and preparations

Sub-GeV New Physics

 New gauge forces or scalar bosons beyond the minimal standard model

• Anomalies: (g-2) $_{\mu}$, ⁸Be/⁴He

• Dark Matter physics

• DM candidates produced in meson decays and direct photo production

JEF Overview

• "Dark Things"

- Model space for sub-GeV dark matter continues to be refined and expanded
- JEF will search for a number of dark gauge boson candidates
- DM search strategy: resolve narrow structures in invariant mass spectra in many decays
- Other Physics: search for CVPC, quark mass ratio, ChPT...
- **Detector**: high-resolution and high-granularity calorimeter

Parameter Landscape

 η/η' decays offer unique sensitivity for new physics that are flavorconserving, light quark-coupling, C-violating–P-conserving processes; complementary to other experiments

JEF Physics - 1

- 1. Search for sub-GeV, hidden bosons
 - vector:
 - Leptophobic vector B' $\eta^{(')} \rightarrow B'\gamma \rightarrow \pi^0\gamma\gamma \quad (0.14 0.54 \ GeV)$ $\eta' \rightarrow B'\gamma \rightarrow \pi^+\pi^-\pi^0\gamma \quad (0.62 - 1.00 \ GeV)$
 - Hidden or dark photon $\eta^{(')} \rightarrow A' \gamma \rightarrow e^+ e^- \gamma$
 - scalar: $\eta \to \pi^0 S \to \pi^0 \gamma \gamma, \pi^0 e^+ e^- (10 \ MeV < m_S < 2m_\pi)$ $\eta^{(')} \to \pi^0 S \to 3\pi, \eta' \to \eta S \to \eta \pi \pi \quad (m_S > 2m_\pi)$
 - Axion-Like Particles (ALP): $\eta^{(')} \rightarrow \pi \pi a \rightarrow \pi \pi \gamma \gamma, \pi \pi e^+ e^-$

mass ranges

JEF Physics - 2

2. Directly constrain CVPC new physics:

$$\eta^{(\prime)} \rightarrow 3\gamma, 2\pi^0\gamma, \pi^+\pi^-\pi^0$$

3. Precision tests of low-energy QCD:

- Interplay of VMD & scalar dynamics in ChPT:
- Transition Form Factors of $\eta^{(\prime)}$:

4. Improve the quark mass ratio via

 $\eta^{(\prime)} \rightarrow \pi^0 \gamma \gamma$ $\eta^{(\prime)} \rightarrow e^+ e^- \gamma$

 $\eta^{(\prime)} \rightarrow 3\pi^0, \pi^+\pi^-\pi^0$

Rich physics program at η,η' factories

Standard Model highlights

- Theory input for light-by-light scattering for (g-2)_µ
- Extraction of light quark masses
- QCD scalar dynamics

Fundamental symmetry tests

- P,CP violation
- C,CP violation

[Kobzarev & Okun (1964), Prentki & Veltman (1965), Lee (1965), Lee & Wolfenstein (1965), Bernstein et al (1965)]

Dark sectors (MeV-GeV)

- Vector bosons (dark photon, B boson, X boson)
- Scalars
- Pseudoscalars (ALPs)

(Plus other channels that have not been searched for to date)

Channel	Expt. branching ratio	Discussion		
$\eta \rightarrow 2\gamma$	39.41(20)%	chiral anomaly, η - η' mixing		
$\eta \rightarrow 3\pi^0$	32.68(23)%	$m_u - m_d$		
$\eta \to \pi^0 \gamma \gamma$	$2.56(22) \times 10^{-4}$	χ PT at $O(p^6)$, leptophobic <i>B</i> boson, light Higgs scalars		
$\eta \rightarrow \pi^0 \pi^0 \gamma \gamma$	$< 1.2 \times 10^{-3}$	χ PT, axion-like particles (ALPs)		
$\eta \rightarrow 4\gamma$	$< 2.8 \times 10^{-4}$	< 10 ⁻¹¹ [52]		
$\eta \to \pi^+ \pi^- \pi^0$	22.92(28)%	m _u – m _d , C/CP violation, light Higgs scalars		
$\eta \to \pi^+ \pi^- \gamma$	4.22(8)%	chiral anomaly, theory input for singly-virtual TFF and $(g - 2)_{\mu}$, P/CP violation		
$\eta \rightarrow \pi^+ \pi^- \gamma \gamma$	$< 2.1 \times 10^{-3}$	χ PT, ALPs		
$\eta \to e^+ e^- \gamma$	$6.9(4) \times 10^{-3}$	theory input for $(g - 2)_{\mu}$, dark photon, protophobic X boson		
$\eta \rightarrow \mu^+ \mu^- \gamma$	$3.1(4) \times 10^{-4}$	theory input for $(g-2)_{\mu}$, dark photon		
$\eta \rightarrow e^+ e^-$	< 7 × 10 ⁻⁷	theory input for $(g - 2)_{\mu}$, BSM weak decays		
$\eta \to \mu^+ \mu^-$	$5.8(8) \times 10^{-6}$	theory input for $(g - 2)_{\mu}$, BSM weak decays, P/CP violation		
$\eta \rightarrow \pi^0 \pi^0 \ell^+ \ell^-$		C/CP violation, ALPs		
$\eta \to \pi^+ \pi^- e^+ e^-$	$2.68(11) \times 10^{-4}$	theory input for doubly-virtual TFF and $(g - 2)_{\mu}$, P/CP violation, ALPs		
$\eta \to \pi^+ \pi^- \mu^+ \mu^-$	$< 3.6 \times 10^{-4}$	theory input for doubly-virtual TFF and $(g - 2)_{\mu}$, P/CP violation, ALPs		
$\eta \to e^+ e^- e^+ e^-$	$2.40(22) \times 10^{-5}$	theory input for $(g-2)_{\mu}$		
$\eta \to e^+ e^- \mu^+ \mu^-$	$<1.6\times10^{-4}$	theory input for $(g-2)_{\mu}$		
$\eta \to \mu^+ \mu^- \mu^+ \mu^-$	$< 3.6 \times 10^{-4}$	theory input for $(g-2)_{\mu}$		
$\eta \to \pi^+ \pi^- \pi^0 \gamma$	$< 5 \times 10^{-4}$	direct emission only		
$\eta \to \pi^\pm e^\mp \nu_c$	$< 1.7 \times 10^{-4}$	second-class current		
$\eta \to \pi^+\pi^-$	$< 4.4 \times 10^{-6}$ [53]	P/CP violation		
$\eta \rightarrow 2\pi^0$	$< 3.5 \times 10^{-4}$	P/CP violation Courtesy S. Tulin		
$\eta \rightarrow 4\pi^0$	$< 6.9 \times 10^{-7}$	<i>P/CP</i> violation		

PDG - n

this talk

η	I ^G (J ^F	$I^{G}(J^{PC}) = 0^{+}(0^{-+})$			
	Mass $m=$ 547.862 \pm 0.018 MeV Full width $\Gamma=$ 1.31 \pm 0.05 keV			$\eta \approx \frac{1}{\sqrt{6}}$	$-(u\bar{u}+d\bar{d}-$
η DECAY MODES	Fraction (Γ_i/Γ)	Sc Confi	cale factor/ idence level	р (MeV/c)	
	Neutral modes				
neutral modes	(72.12±0.34) %		S=1.2	-	
2γ	(39.41±0.20) %		S=1.1	274	
$3\pi^{0}$	(32.68±0.23) %		S=1.1	179	
$\pi^0 2\gamma$	(2.7 \pm 0.5) $ imes$	10 ⁻⁴	S=1.1	257	
$2\pi^0 2\gamma$	< 1.2 ×	10-3	CL=90%	238	
4γ	< 2.8 ×	10-4	CL=90%	274	
invisible	< 1.0 ×	10-4	CL=90%	-	
	Charged modes				
charged modes	(28.10±0.34) %		S=1.2	_	
$\pi^+\pi^-\pi^0$	(22.92±0.28) %		S=1.2	174	
$\pi^+\pi^-\gamma$	(4.22±0.08) %		S=1.1	236	
$e^+e^-\gamma$	$(6.9 \pm 0.4) \times$	10-3	S=1.3	274	
Charge conjugati	on (C) or Lepton Family number	(<i>LF</i>)	violating n	nodes	
3γ	C < 3.1	$\times 10^{-3}$	⁸ CL=90%	67	

PDG - η'

η′(958)

 $I^{G}(J^{PC}) = 0^{+}(0^{-+})$

Mass m = 957.78 \pm 0.06 MeV Full width $\Gamma =$ 0.198 \pm 0.009 MeV $\eta' \approx \frac{1}{\sqrt{3}}(u\bar{u} + d\bar{d} + s\bar{s})$

р

	$\eta'(958)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/ <i>c</i>)	
this talk	$\pi^+\pi^-\eta$	(42.9 ±0.7)%		232	
	$ ho^{0}\gamma$ (including non-resonant	(29.1 ± 0.5) %		165	
	$ \begin{array}{c} \pi^{+} \pi^{-} \gamma) \\ \pi^{0} \pi^{0} \eta \end{array} $	(22.2 ±0.8)%		239	
	$\pi^0 \gamma \gamma$	< 8 × 1	10-4 90%	469	w/o BESIII
	$\gamma\gamma$	(2.20±0.08) %		479	
	$3\pi^0$	$(2.14\pm0.20)\times10^{-10}$	10-3	430	

Charge conjugation (C), Parity (P), Lepton family number (LF) violating modes

		()	0		
$\pi^+\pi^-$	P,CP	< 6	imes 10 ⁻⁵	90%	458
$\pi^0\pi^0$	P,CP	< 4	imes 10 ⁻⁴	90%	459
$\pi^0 e^+ e^-$	С	[f] < 1.4	imes 10 ⁻³	90%	469
$\eta e^+ e^-$	С	[f] < 2.4	$\times 10^{-3}$	90%	322
3γ	С	< 1.0	imes 10 ⁻⁴	90%	479

Key Channel: $\eta \rightarrow \pi^0 \gamma \gamma$

• Search for sub-GeV gauge bosons:

• leptophobic vector B' coupling to baryon no. $\eta \to B' \gamma \to (\pi^0 \gamma) \gamma$ Nelson PLB 221, 80 // Tulin PRD 89,114008

 scalar S: a electrophobic scalar can help solve proton radius and (g-2)_μ puzzles.

 $\eta \rightarrow \pi^0 S \rightarrow \pi^0(\gamma \gamma)$ Batell, PRD 100,095020 / Liu Nucl.Phy.B,114638

• A rare window to probe interplay of VMD & scalar resonance in ChPT Prakhov PRC 78,015206 $\eta \rightarrow \pi^0 \gamma \gamma$

Key Channel: $\eta' \rightarrow \pi^0 \gamma \gamma$

Recent BES-III measurement on η' :

- doubly-radiative decay measured for first time
- BR(inclusive) = $3.20\pm0.07(stat)\pm0.23(sys))\times10^{-3}$
- $BR(\eta' \rightarrow \gamma \omega) = 23.7 \pm 1.4(stat) \pm 1.8(sys)) \times 10^{-4}$
- BR(non-resonant) = (6.16±0.64(stat)±0.67(sys))×10⁻⁴ Ablikim, Phys. Rev. D 96, 012005

Key Channel: $\eta' \rightarrow \pi^0 \gamma \gamma$

Recent BES-III measurement on η' :

- doubly-radiative decay measured for first time
- BR(inclusive) = 3.20±0.07(stat)±0.23(sys))×10⁻³
- $BR(\eta' \rightarrow \gamma \omega) = 23.7 \pm 1.4(stat) \pm 1.8(sys)) \times 10^{-4}$
- BR(non-resonant) = (6.16±0.64(stat)±0.67(sys))×10⁻⁴
 Ablikim, Phys. Rev. D 96, 012005

Tension with theory:

Balytzkyi, arXiv:1811.01402

VMD + (Chiral Perturbation theory or Linear sigma model) (highly suppressed)

- Result Γ(η'→π⁰γγ)=1.6-3.0 keV disagrees with BESIII result Γ(η'→π⁰γγ)≈0.64 keV
- Dark photon? Increase mass range for B search?

Key Channel: $\eta \rightarrow 3\pi^0$

- A clean probe for **quark mass ratio**:
 - decays through isospin violation:

$$Q^{2} = \frac{m_{s}^{2} - \hat{m}^{2}}{m_{d}^{2} - m_{u}^{2}}, \quad \hat{m} = \frac{m_{u} + m_{d}}{2}$$

 $A = (m_1 - m_1)A_1 + \alpha_2 A_2, \alpha_3 \sim small$

$$A(s,t,u) = \frac{1}{Q^2} \frac{m_K^2}{m_\pi^2} (m_\pi^2 - m_K^2) \frac{\mathcal{M}(s,t,u)}{3\sqrt{3}m_\pi^2 F_\pi^2}$$

Key Channel: $\eta \rightarrow 3\pi^0$

- A clean probe for **quark mass ratio**:
 - decays through isospin violation:

$$Q^{2} = \frac{m_{s}^{2} - \hat{m}^{2}}{m_{d}^{2} - m_{u}^{2}}, \quad \hat{m} = \frac{m_{u} + m_{d}}{2}$$

 $A = (m_u - m_d)A_1 + \alpha_{em}A_2, \ \alpha_{em} \sim small$ $A(s, t, u) = \frac{1}{Q^2} \frac{m_K^2}{m_\pi^2} (m_\pi^2 - m_K^2) \frac{\mathcal{M}(s, t, u)}{3\sqrt{3}m_\pi^2 F_\pi^2}$

• Uncertainties in quark mass ratio:

e-Print: 2007.00664

Key Channel: $\eta \rightarrow 3\pi^0$

- A clean probe for **quark mass ratio**:
 - decays through isospin violation:

$$Q^{2} = \frac{m_{s}^{2} - \hat{m}^{2}}{m_{d}^{2} - m_{u}^{2}}, \quad \hat{m} = \frac{m_{u} + m_{d}}{2}$$

 $A = (m_u - m_d)A_1 + \alpha_{em}A_2, \ \alpha_{em} \sim small$ $A(s, t, u) = \frac{1}{Q^2} \frac{m_K^2}{m_\pi^2} (m_\pi^2 - m_K^2) \frac{\mathcal{M}(s, t, u)}{3\sqrt{3}m_\pi^2 F_\pi^2}$

• Uncertainties in quark mass ratio:

e-Print: 2007.00664

Key Channel: $\eta \rightarrow 3\gamma$

• SM contribution:

• BR($\eta \rightarrow 3\gamma$) <10⁻¹⁹ via P-violating weak interaction.

Theoretical push?

- A C- and T-violating, and Pconserving interaction was proposed by Bernstein, Feinberg and Lee. Phys. Rev., 139, B1650 (1965)
- A calculation by Tarasov suggests: BR(η→3γ)< 10⁻² Sov.J.Nucl.Phys.,5,445 (1967)

3y BR Upper Limit vs Accepted Eta Decays 1.E-03 Background fraction: 1.E-04 CB 1E-3 3R Upper Limit 1.E-05 KLOE 1E-4 1E-5 1.E-06 1E-6 Proj. JEF 1E-7 1.E-07 (100 days' beam) 1.E-08 1.E+04 1.E+05 1.E+08 1.E+06 1.E+07 Total Accepted Eta Decays

Improve BR upper limit by one order of magnitude to directly tighten the constraint on CVPC new physics

Key Channel: $\eta^{(\prime)} \rightarrow \pi \pi a$

- Sensitivity of photon-beam experiments to axionlike particles (ALPs):
 - QCD-scale masses; dominant coupling to SM is either to photons or gluons.
- Data-driven method
 - eliminates the need for knowledge of nuclear form factors or the photon-beam flux
- GlueX/PrimEx-type calorimeter
 - $0.15 < m_{\alpha} < 0.46$ GeV region

New limit is set using the published m_{YY} spectrum from ≈1/pb of GLUEX data PHYSICAL REVIEW LETTERS 123, 071801 (2019)

Production Rates

JEF (100 days of beam)

	η	η′
Tagged mesons	6.5x10 ⁷	4.9x10 ⁷

Previous Experiments

Experiment	Total η	Total η′
CB at AGS	107	-
CB MAMI-B	2×107	_
CB MAMI-C	6x107	106
WASA-COSY	~3x10 ⁷ (p+d), ~5x10 ⁸ (p+p)	_
KLOE-II	3×10 ⁸	5x10 ⁵
BESIII	~107	~5x10 ⁷

JEF offers a competitive η/η' factory

(proposed REDTOP 10¹³/10¹¹ per year)

Key Features of JEF

- η/η' production: 8.4-11.7 GeV tagged γ beam; η , η' energy boost
- produce & detect η/η' simultaneously; exclusive channels $\gamma p \rightarrow p(\eta/\eta')$ and $\eta/\eta' \rightarrow \gamma \gamma, \pi^0 \gamma \gamma \dots$
- Reduce non-coplanar backgrounds by detecting recoil protons with the GlueX detector.
- Upgraded FCAL-II with 40x40 crystal (80x80cm²) lead tungstate (PbWO₄) insert for improved resolution and superior granularity.

Simulations

40x40 insert

I.Jaegle, T. Beattie

Selection Criteria

- Default ReactionFilter selection criteria applied +
- 4 neutrals and 1 track in sync. with RF
- Track originates from within the target
- 1 photon pair with invariant mass corresponding to π^0
- Other pair of bachelor photons with invariant mass outside π^0 -window
- Masking $\pi^0 \pi^0$, $\pi^0 \eta$, $\eta \eta$ events
- 4 neutrals in FCAL and 1 in insert

)
$$d_{\gamma}^{\pi^0} \geq 100$$
 cm

Non-peaking $\eta \to \gamma \gamma$ and $\eta \to \pi^0 \pi^0 \pi^0$ backgrounds

May 2022

Many photons

Mode	Branching Ratio Physics Highlight F		Photons
priority:			
$\gamma + B'$	$\gamma + B'$ beyond SM leptophobic dark vector boso		4
$\pi^0 + \phi'$	beyond SM	electrophobic dark scalar boson	4
$\pi^0 2\gamma$	$(2.7 \pm 0.5) \times 10^{-4}$	χ PTh at $O(p^6)$	4
$3\pi^0$	$(32.7 \pm 0.2)\%$	$m_u - m_d$	6
$\pi^+\pi^-\pi^0$	$(22.9 \pm 0.3)\%$	$m_u - m_d$, CV	2
3γ	$< 1.6 \times 10^{-5}$	CV, CPV	3
ancillary:			
4γ	$<2.8\times10^{-4}$	$< 10^{-11}$ 23	4
$2\pi^{0}$	$< 3.5 \times 10^{-4}$	CPV, PV	4
$2\pi^0\gamma$	$< 5 imes 10^{-4}$	CV, CPV	5
$3\pi^0\gamma$	$< 6 \times 10^{-5}$	CV, CPV	7
$4\pi^{0}$	$< 6.9 \times 10^{-7}$	CPV, PV	8
$\pi^0 \gamma$	$< 9 \times 10^{-5}$	CV,	3
		Ang. Mom. viol.	
normalization:			
2γ (39.4 ± 0.2)% anomaly, η		anomaly, η - η' mixing	
		E12-10-011	2

FCAL-II PbWO₄ Insert

Simulated $\eta \rightarrow \pi^0 \gamma \gamma$ event

S. Taylor

Property	Improvement factor
Energy o	2
Position σ	2
Granularity	4
Radiation- resistance	10

algorithms: Default/Island and Machine Learning

Distinguishing Reconstructed Photon Showers

Single volume shower

E-M Shower Simulator, <u>mpp.mpg.de</u>

- Showers fire multiple FCAL blocks: clusters
- Photons with small angular separation can look like a single photon on the FCAL
- FCAL-II has improved granularity
- Study limits of separation in FCAL-II

I. Larin, JLab

Photon Separation

Clusterizer & Reconstruction:

- GlueX Default Reconstruction Algorithm adapted from RADPHI

-Island Algorithm adapted from GAMS_ Tasks:

- COG-weighted vs LOG-weighted

evaluate as f(energy, photon opening angle)

-deploy Machine Learning (ML)

Single photon candidate

Performance of the RADPHI detector and trigger in a high rate tagged photon beam

R.T. Jones^{a,1}, T. Bogue^{a,2}, B.E. Evans^a, M. Kornicer^a, A.R. Dzierba^b, R. Gardner^{b,3},
J.L. Gunter^{b,4}, D. Krop^b, R. Lindenbusch^b, D.R. Rust^b, E. Scott^b, P. Smith^b, C. Steffen^{b,5},
S. Teige^{b,*}, D.S. Armstrong^c, J.H.D. Clark^{c,6}, L.J. Kaufman^{c,7}, D.J. Steiner^c, E. Frlez^d,
D. Pocanic^d, J.J. Kolata^e, L.O. Lamm^e, G. Rogachev^e, C. Campbell^f, E. Collins^f,
L. McGlinchey^f, P. Rubin^{f,8,9}, E. Walker^f, G.S. Adams^g, J. Napolitano^g, H. Crannell^h,
D.I. Sober^h, R.R. Mammei^{i,10}, E.S. Smithⁱ

NIM A 570 (2007) 384-398

A. A. Lednev, IHEP preprint 93-153 Bland, et al., Instruments and Experimental Techniques 51(2008) 342-350.

Two photon candidate

I. Larin, JLab

ML: Photon Vs Background Classification

Using machine learning to separate hadronic and electromagnetic interactions in the GlueX forward calorimeter

R. Barsotti¹ and M.R. Shepherd¹

JINST 15 P05021

Published 27 May 2020 • © 2020 IOP Publishing Ltd and Sissa Medialab

Journal of Instrumentation, Volume 15, May 2020

ML: Photon Vs Background Classification

Machine Learning: binary classification
Multivariate analysis: combined discriminating power from all key variables

Calorimeter Prototyping

CCAL Prototype: 12x12 PbWO₄ array successfully tested and used for the PrimEx- η experiment in 2019 and in fall 2021.

https://doi.org/10.1016/j.nima.2021.165683

Hardware Status

- PbWO₄ crystal Quality Assurance.
 - surface, clarity, color, dimensions, light transmission & yield

Pair Spectrometer (scint tile)

Module assembly

Fabrication and Installation

- Finalizing engineering design for frame
- Modules ready for installation in 2023
- Planned installation duration: ~ 6 months

Module Assembly

• Assembly Line: crew (techs, summer students, pdfs), 459/1600 modules done

• Light Monitoring System: transmittance variation

Example of damaged block from radiation (DVCS experiment)

Summary & Outlook

- GlueX + 12 GeV tagged photon beam yields a unique η/η' factory
 - • $\mathcal{O}(2)$ background reduction in neutral rare decay modes vs other facilities.
- Simultaneously measure η/η' decays with main physics goals of:
 - Test SM and search for new BSM physics; constrain CVPC new physics; precision tests of low-energy QCD, improve the light quark mass ratio, a.o.
- Conventional cuts look very promising, e.g. for the key channel of $\eta \to \pi^0 \gamma \gamma$
- Algorithm work ongoing; Machine Learning will applied this summer.

•Upgraded FCAL-II with a PWO insert is under construction. Data in 2024.

gluex.org/thanks

Decays

32

Channel	Expt. branching ratio	Discussion	Sect.
$\eta \rightarrow 2\gamma$	39.41(20)%	chiral anomaly, $\eta - \eta'$ mixing	6.1
$\eta \rightarrow 3\pi^0$	32.68(23)%	$m_u - m_d$	5.1
$\eta ightarrow \pi^0 \gamma \gamma$	$2.56(22) \times 10^{-4}$	χ PT at $O(p^6)$, leptophobic <i>B</i> boson, light Higgs scalars	7. <u>10.1</u> 10.2
$\eta \rightarrow \pi^0 \pi^0 \gamma \gamma$	$< 1.2 \times 10^{-3}$	χ PT, axion-like particles (ALPs)	10.3
$\eta \rightarrow 4\gamma$	$<2.8\times10^{-4}$	< 10 ⁻¹¹ 52	
$\eta \to \pi^+\pi^-\pi^0$	22.92(28)%	$m_u - m_d$, C/CP violation, light Higgs scalars	5.1.9.2. 10.2
$\eta \to \pi^+ \pi^- \gamma$	4.22(8)%	chiral anomaly, theory input for singly-virtual TFF and $(g - 2)_{\mu}$, P/CP violation	6.3. 9.1
$\eta ightarrow \pi^+\pi^-\gamma\gamma$	$< 2.1 \times 10^{-3}$	χ PT, ALPs	10.3
$\eta \to e^+ e^- \gamma$	$6.9(4) \times 10^{-3}$	theory input for $(g - 2)_{\mu}$, dark photon, protophobic X boson	6.4. 10.1
$\eta ightarrow \mu^+ \mu^- \gamma$	$3.1(4) \times 10^{-4}$	theory input for $(g-2)_{\mu}$, dark photon	6.4, 10.1
$\eta \to e^+ e^-$	$< 7 \times 10^{-7}$	theory input for $(g - 2)_{\mu}$, BSM weak decays	6.9, 8
$\eta \to \mu^+ \mu^-$	$5.8(8) \times 10^{-6}$	theory input for $(g - 2)_{\mu}$, BSM weak decays, P/CP violation	6.9. <u>8</u> 9.1
$\eta \to \pi^0 \pi^0 \ell^+ \ell^-$		C/CP violation, ALPs	9.2, 10.3
$\eta \to \pi^+\pi^- e^+ e^-$	$2.68(11) \times 10^{-4}$	theory input for doubly-virtual TFF and $(g - 2)_{\mu}$, P/CP violation, ALPs	6.6. 9.1.10.3
$\eta \to \pi^+ \pi^- \mu^+ \mu^-$	$< 3.6 \times 10^{-4}$	theory input for doubly-virtual TFF and $(g - 2)_{\mu}$, P/CP violation, ALPs	6.6. 9.1. 10.3
$\eta \to e^+ e^- e^+ e^-$	$2.40(22) \times 10^{-5}$	theory input for $(g-2)_{\mu}$	6.7
$\eta \to e^+ e^- \mu^+ \mu^-$	$<1.6\times10^{-4}$	theory input for $(g-2)_{\mu}$	6.7
$\eta \to \mu^+ \mu^- \mu^+ \mu^-$	$< 3.6 \times 10^{-4}$	theory input for $(g-2)_{\mu}$	6.7
$\eta ightarrow \pi^+ \pi^- \pi^0 \gamma$	$< 5 \times 10^{-4}$	direct emission only	6.8
$\eta \to \pi^\pm e^\mp v_e$	$<1.7\times10^{-4}$	second-class current	8
$\eta \to \pi^+\pi^-$	$< 4.4 \times 10^{-6}$ [53]	P/CP violation	9.1
$\eta \rightarrow 2\pi^0$	$<3.5\times10^{-4}$	P/CP violation	9.1
$\eta \rightarrow 4\pi^0$	$< 6.9 \times 10^{-7}$	P/CP violation	6.5, 9.1

N

Table 1: Summary of η meson decays. Experimental information on the branching ratios is taken from the Particle Data Group (PDG) review [54] unless otherwise indicated. The total η width is $\Gamma_{\eta} = 1.31(5) \text{ keV}$ [54].

Channel	Expt. branching ratio	Discussion	Sect.
$\eta' \to \eta \pi^+ \pi^-$	42.6(7)%	large- $N_c \chi PT$, light Higgs scalars	5.2, 10.2
$\eta' \to \pi^+\pi^-\gamma$	28.9(5)%	chiral anomaly, theory input for singly-virtual TFF	6.3.
		and $(g-2)_{\mu}$, P/CP violation	9.1
$\eta' \rightarrow \eta \pi^0 \pi^0$	22.8(8)%	large- $N_c \chi PT$	5.2
$\eta' \rightarrow \omega \gamma$	2.489(76)% 55	theory input for singly-virtual TFF and $(g - 2)_{\mu}$	6.8
$\eta' \to \omega e^+ e^-$	$2.0(4) \times 10^{-4}$	theory input for doubly-virtual TFF and $(g - 2)_{\mu}$	6.8
$\eta' \rightarrow 2\gamma$	2.331(37)% 55	chiral anomaly, $\eta - \eta'$ mixing	6.1
$\eta' \rightarrow 3\pi^0$	2.54(18)% (*)	$m_u - m_d$	5.3
$\eta' \to \mu^+ \mu^- \gamma$	$1.09(27) \times 10^{-4}$	theory input for $(g - 2)_{\mu}$, dark photon	6.4, 10.1
$\eta' \to e^+ e^- \gamma$	$4.73(30) \times 10^{-4}$	theory input for $(g-2)_{\mu}$, dark photon	6.4, 10.1
$\eta' \to \pi^+\pi^-\mu^+\mu^-$	$<2.9\times10^{-5}$	theory input for doubly-virtual TFF and $(g - 2)_{\mu}$,	6.6. 9.1.
		P/CP violation, dark photon, ALPs	10.1, 10.3
$\eta' \to \pi^+\pi^- e^+ e^-$	$2.4(^{+1.3}_{-1.0}) \times 10^{-3}$	theory input for doubly-virtual TFF and $(g - 2)_{\mu}$,	6.6.9.1
0.0414		P/CP violation, dark photon, ALPs	10.1,10.3
$\eta' \rightarrow \pi^0 \pi^0 \ell^+ \ell^-$		C/CP violation, ALPs	9.2, 10.3
$\eta' \rightarrow \pi^+ \pi^- \pi^0$	$3.61(17) \times 10^{-3}$	$m_u - m_d$, C/CP violation,	5.3.9.2
$n' \rightarrow 2(\pi^+\pi^-)$	$8.4(0) \times 10^{-5}$	theory input for doubly virtual TEE and $(a - 2)$	6.5
$\eta \rightarrow 2(\pi \pi)$ $\pi' \rightarrow \pi^+ \pi^- 2\pi^0$	$8.4(9) \times 10^{-4}$	theory input for doubly-virtual TFF and $(g = 2)_{\mu}$	6.5
$\eta \rightarrow \pi^{+}\pi^{-}2\pi^{-}$	$1.8(4) \times 10^{-3}$	AL Do	0.5
$\eta \rightarrow 2(\pi^{+}\pi^{-})\pi^{-}$	< 1.8 × 10 -5	ALPS	10.5
$\eta \rightarrow \kappa^{-}\pi^{+}$	< 4 × 10 -4	weak interactions	0
$\eta \rightarrow \pi^- e^- v_e$	$< 2.1 \times 10^{-3}$	second-class current	0
$\eta^{-} \rightarrow \pi^{-} \gamma \gamma$	3.20(24) × 10 °	light Higgs scalars	10.2
$\eta' \rightarrow \eta \gamma \gamma$	8.3(3.5) × 10 ⁻⁵ [56]	vector and scalar dynamics, B boson,	7.4.10.1.
		light Higgs scalars	10.2
$\eta' \rightarrow 4\pi^0$	< 4.94 × 10 ⁻⁵ [57]	(S-wave) P/CP violation	6.5
$\eta' \to e^+ e^-$	$< 5.6 \times 10^{-9}$	theory input for $(g - 2)_{\mu}$, BSM weak decays	6.9. 8
$\eta' \to \mu^+ \mu^-$		theory input for $(g - 2)_{\mu}$, BSM weak decays	6.9 <mark>.</mark> 8
$\eta' \to \ell^+ \ell^- \ell^+ \ell^-$		theory input for $(g - 2)_{\mu}$	6.7
$\eta' \to \pi^+ \pi^- \pi^0 \gamma$		B boson	10.1
$\eta' \to \pi^+\pi^-$	$<1.8\times10^{-5}$	P/CP violation	9.1
$\eta' \to 2\pi^0$	$< 4 \times 10^{-4}$	P/CP violation	9.1

Table 2: Summary of η' meson decays. Experimental information on the branching ratios is taken from the PDG review [54] unless otherwise indicated. We remark that for $\mathcal{B}(\eta' \to 3\pi^0)$ marked with ^(*) above, there is significant tension between the PDG *fit* and *average*; see the discussion in Sect. [5.3] Also, in this review, we take the PDG *fit* value for the total η' width $\Gamma_{\eta'} = 196(9)$ MeV, which differs somewhat from the PDG *average* that is dominated by the COSY measurement $\Gamma_{\eta'} = 226(17)(14)$ keV [58].

GlueX Data & MC

Reconstructed GlueX data from 2016 and 2017, original FCAL

 Significant source of background: η→3π⁰ with missing/merged photons

Simulation for 1 day running with upgraded FCAL-II

• Beam energy range: 8.4-11.7 GeV Intensity $N_{\gamma} \sim 1 \times 10^8/s$

GlueX Data & MC

Reconstructed GlueX data from 2016 and 2017, original FCAL

 Significant source of background: η→3π⁰ with missing/merged photons

GlueX Phase-I data under analysis

Simulation for 1 day running with upgraded FCAL-II

• Beam energy range: 8.4-11.7 GeV Intensity $N_{\gamma} \sim 1 \times 10^8/s$

GlueX Run Group

The Proposals

- **GlueX-II**: a extension of the GlueX spectroscopy program at high intensity (E12-13-003) and with enhanced particle identification (E12-12-002)
- JEF: a focus on rare and forbidden decays of η⁽⁺⁾ mesons that is enabled by a highresolution upgrade to the forward calorimeter
- PAC approved JEF to run concurrently with GlueX-II

		Commissioning		Production	
Topic	Proposal Number	Approved	Completed	Approved	Completed
GlueX II with DIRC	E12-12-002	20	14	200	38
GlueX II	E12-13-003	0	0	200	38
JEF	E12-12-002A	0	0	100	0
Total Unique	-	20	14	200	38

The GlueX Detector

The Beam Line

6

7

11

Photon Beam Energy (GeV)

The Beam Line

The Beam Line

3% Syst. Uncert.

9

9.5

10.5

Photon Beam Energy (GeV)

11

11.5

10

 Measure beam polarization independent of spectrometer arXiv:1703.07875

7.5

8

8.5