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Overview

1. Introduction
• Rare event searches using HPGe detectors
• Problem statement and motivation
• Autoencoders, denoising autoencoders

2. Methodology
• Overview of our detector
• Datasets (simulated and real)
• Training procedures

3. Results
• Denoising performance on simulations
• Verification with real detector data

4. Conclusions and future work
• Broadly applicable to particle astrophysics
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Introduction

• High-purity germanium (HPGe) detectors widely
used in rare event searches
• Neutrinoless double-beta decay[2, 3, 4]

• Dark matter searches[5, 6]

• Other beyond Standard Model physics[7, 8, 9]

[10]
• Adaptive denoising techniques are not typically applied to data

• Noise removal could help advance searches for certain rare event interactions
• Identify low-energy signal events that would otherwise be dominated by electronic noise

• Relevant for solar axions, Pauli Exclusion Principle violation, electron decay, etc.[11]

• Improved background rejection based on pulse shapes
• For example, slow energy-degraded pulses[12, 13]

• More accurate measurements of pulse amplitudes → better energy resolution
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Introduction

• Deep learning is frequently used to remove noise in other fields
• Often outperforms traditional denoising methods (e.g., moving average, Savitzky-Golay

filtering, wavelet thresholding)

• Most applications are to 2-dimensional images

−→
[14]

• Will show that deep learning is also very effective at denoising 1-dimensional electronic
signals (demonstrated specifically on HPGe detector pulses)
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Autoencoders

• An autoencoder is an algorithm used to learn a useful representation of data
• Trained to map the inputs to the inputs (with some form of constraint)

[15]

• By definition, an autoencoder is lossy
• The goal is to retain as much useful information as possible

• Typically a neural network

• Widely used for dimensionality reduction, anomaly detection, and generative modelling
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Autoencoders

• Components include an encoder, fθ, and decoder, gθ′

Internal/latent representation, y, is obtained by applying encoder to input:

fθ(x) = y

Input reconstruction, z, is obtained by applying decoder to latent representation:

gθ′(y) = gθ′(fθ(x)) = z

Minimize some loss function quantifying the reconstruction of x, L(x, z), to train the
autoencoder
• e.g., mean squared error

L(x, z) =
1

N

N∑
i

‖zi − xi‖22
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Denoising autoencoders

• Denoising autoencoders impose the constraint that reconstruction must also remove noise
• Proposed as a method to extract robust features[16]

• Purpose was not for denoising, but to learn a better representation for classification tasks
• Input becomes a corrupted version of x, x̃, by some process qD

⋯⋯⋯⋯

[1]
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The detector

• Signals are from a 1 kg p-type point contact
detector located at Queen’s University
• Cylindrical with a radius of 3 cm and height of 5 cm
• Manufactured by ORTEC/AMTEK
• Operated in a PopTop cryostat

[17]
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• Each signal is a sequence of voltages sampled
at a fixed interval
• Recorded with 16-bit digitizer
• Observed noise levels after preprocessing

reflect energy of pulse
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Datasets: real detector data

Americium-241 source
• Produces 60 keV γs
• Almost entirely single-site events

Cobalt-60 source
• Produces 1173 keV and 1332 keV γs
• Numerous multi-site events from Compton scatters

Detector noise
• Collected by randomly triggering the detector
• Signals filtered to remove actual events that occur

in the same trigger window

241Am

60Co
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Datasets: simulated data
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Library pulses
• 1724 simulated “library” pulses[18]

• Each pulse corresponds to point on
1mm× 1mm azimuthally symmetric grid

• Created using siggen simulation software[19]

• Used to infer position of real events

Fake pulses
• Generated with piecewise functions
• Mimic the general shape of the library pulses

without the requirement of complex physics
simulations
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Preprocessing

• Data pulses preprocessed to remove baseline
• Data pulses have exponential decay removed with pole zero correction
• Data pulses scaled by amplitude (calculated with a trapezoidal filter)
• Simulated pulses do not require this preprocessing (already amplitude normalized)

Amplitude
normalization
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Preprocessing

• Data pulses preprocessed to remove baseline
• Data pulses have exponential decay removed with pole zero correction
• Data pulses are mean-subtracted and scaled to have standard deviation of 0.5
• Simulated pulses only require last step

Standardization
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Data augmentation

• From the simulated single-site event pulses, can create a diverse training set
• Combine single-site simulated pulses to create artificial multi-site events
• Apply random horizontal shifts, vertical shifts, and amplitude scales to each pulse
• Add detector noise to each pulse with a random standard deviation
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Training procedures

Regular
• Trained to map the noisy pulse to the corresponding clean underlying pulse
• Must know the true pulse – only works on simulated data

Noise2Noise[20]
• Trained to map noisy pulse to another noisy pulse (different noisy realizations of same

underlying pulse)
• An impossible task in practice
• Model will instead learn to predict the mean, given infinite different noisy realizations

• Can be used with either simulations or real data
• For detector data, add even more noise to the already noisy pulse
• Include a total variation penalty[21] to original loss function L0 to account for the noisy true mean
• Penalize the absolute difference between given sample (j) and subsequent sample (j + 1) in pulse
• Apply scaling factor λ to control weighting

L = L0 +
λ

N

N∑
i

M−1∑
j

|zi,j+1 − zi,j |
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Noise2Noise

Original data pulse
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Noise2Noise

Original data pulse with a random noise pulse
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Noise2Noise

Original data pulse with another random noise pulse
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Noise2Noise
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Network architecture

• Fully convolutional autoencoder
• Weight sharing provides consistent noise removal across pulse
• Feature locality and shift equivariance
• Allows for a variable input shape (subject to some restrictions)
• Significant reduction in the number of trainable parameters

[22]
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Results: simulations

• Qualitatively, denoising with deep learning
performs very well on simulations

• Autoencoder is superior to all traditional
denoising methods investigated
• Compared mean squared error on test set

containing simulated single- and multi-site
events

• Each method optimized on a separate
validation set to select hyperparameters

• Regular training procedure (with simulations)
outperforms Noise2Noise procedure (with
60Co data)
• Still very good performance with Noise2Noise
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Results: data

• Qualitatively, denoising with deep learning
performs very well on data

• More difficult to quantify denoising
• No true underlying pulse to compare to

• However, can make a statistical comparison to
evaluate the performance
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Results: data (χ2 comparison)

• 241Am dataset contains mostly single-site
events from 60 keV γs

• Use a χ2 comparison between the original pulse
and denoised pulse, best-fit library pulse

χ2 =

M∑
i=1

(zi − xi)2

σ2i

• χ2 distribution between noisy and
denoised pulse is consistent with expected
χ2 distribution of our detector noise
• Taken over 200 samples, contains rise region
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Results: data (energy resolution)

• Can also evaluate the effect of denoising on the
energy resolution
• Energy calculated from the amplitude of a

trapezoidal filter
• FWHM of 60 keV peak is the energy resolution

• Optimal energy resolution is comparable before
and after denoising

• Much lower shaping time required to achieve
good energy resolution
• Especially true for standardized preprocessing
• Important for data storage, analysis, etc.
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Results: data (energy resolution)

• Create simulated dataset to mimic 241Am γs
• Single-site library events with detector noise
• Same noise level as 241Am dataset

• Observe same effect as with real data
• Comparable energy resolution with lower

shaping time
• Best results with standardized preprocessing

• Observe different patterns
• Optimal energy resolution improves
• Energy resolution continues decreasing up to

the limit of the shaping time

• Under ideal conditions, denoising allows for an
improvement in energy resolution
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Conclusions

• Deep convolutional autoencoders are effective at removing noise from HPGe detector
pulses
• Outperforms various traditional denoising methods
• Denoised pulses are statistically consistent with data pulses
• Can reach optimal energy resolution with a lower shaping time

• Can improve the optimal energy resolution under some circumstances

• Models can be trained without the need for detailed detector simulations
• “Fake” pulses are a very rough approximation to library pulses
• Noise2Noise method requires only noisy detector data

• Results could likely be improved with more data
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Conclusions

• Results presented here are focused on HPGe detector data
• Noise removal is beneficial in many contexts
• Our group is applying these methods to signals from other detector technologies

• Gaseous proportional counters, bubble chambers

• The encoder portion of the network can also be used for tasks
• The denoising autoencoder forces the encoder to learn a robust representation of the data
• Exploring the use of the encoder output for clipping restoration, peak finding, and

single-/multi-site event discrimination

• Work is broadly applicable to the particle astrophysics community
• Great potential to be expanded on
• See poster from Tianai Ye, talk from Noah Rowe
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Thank You!
More details contained in the paper. Check it out!

arXiv:2204.06655
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Model architecture
Layer Stride Window Output
Input 4096, 1
Convolution 1 1 4096, 8
Convolution 1 9 4088, 16
Average Pooling 2 2 2044, 16
Convolution 1 17 2028, 32
Average Pooling 2 2 1014, 32
Convolution 1 33 982, 64
Average Pooling 2 2 491, 64
Convolution 1 33 459, 32
Transpose Convolution 1 33 491, 32
Upsampling 2 2 982, 64
Transpose Convolution 1 33 1014, 64
Upsampling 2 2 2028, 64
Transpose Convolution 1 17 2044, 32
Upsampling 2 2 4088, 32
Transpose Convolution 1 9 4096, 16
Convolution (output) 1 1 4096, 1
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Results on simulations

Training procedure and data Mean squared error (×10−5)

Gaussian noise Detector noise

Procedure Data Noise Lib Fake Lib Fake

Regular Library Detector 4.37 4.94 3.88 4.26
Regular Library Gaussian 3.41 3.85 4.49 4.80
Regular Fake Detector 5.43 4.55 4.57 3.83
Regular Fake Gaussian 3.85 3.35 4.92 4.29

N2N (λ = 0) Library Detector 4.13 4.65 4.03 4.41
N2N (λ = 0) Library Gaussian 3.45 3.85 4.52 4.79
N2N (λ = 0) Fake Detector 4.87 4.08 4.62 3.87
N2N (λ = 0) Fake Gaussian 3.84 3.39 4.92 4.33

N2N (λ = 0) Detector Detector 9.28 9.10 10.02 9.97
N2N (λ = 2 · 10−2) Detector Detector 5.81 6.05 6.88 6.99

[1]
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Trapezoidal filter
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Noise curve
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