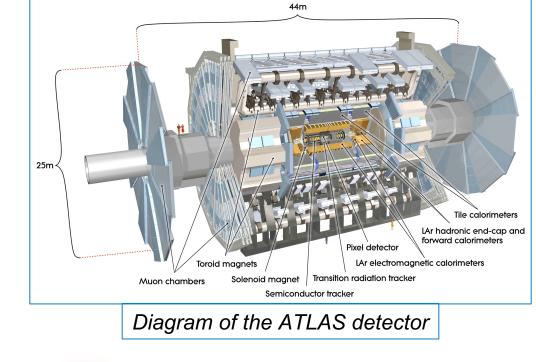
Measurements of the production cross section for the collinear emission of a *Z* boson from a jet in pp collisions at 13 TeV with the ATLAS detector

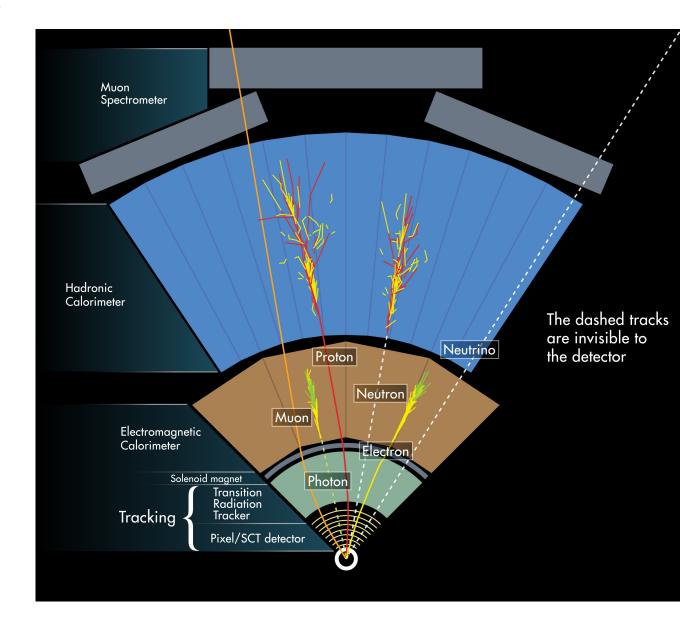
Alexandre Laurier – Carleton University



CAP Congress 2022 Hamilton, Ontario 2022-06-06

Outline

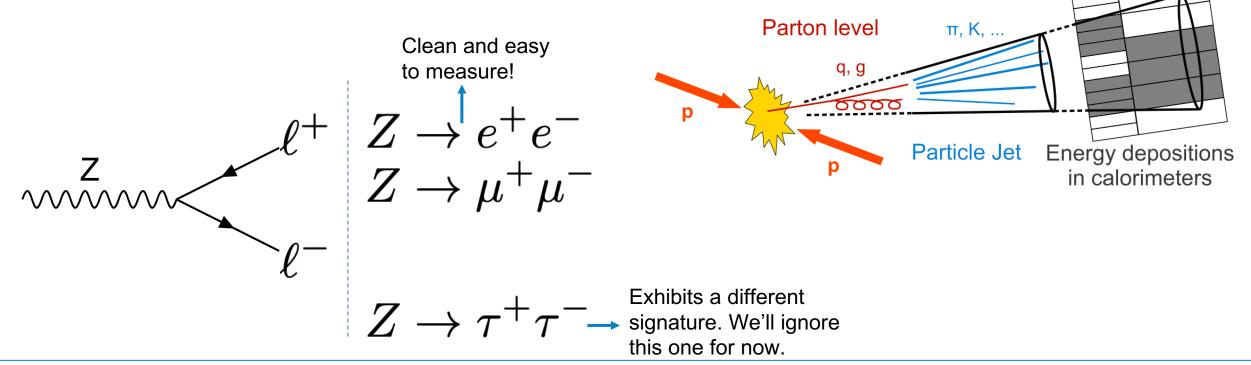
- \triangleright The ATLAS experiment
- \triangleright Z bosons & jets
- ▷ Collinear Z boson production
- ➢ Analysis & Results


Collinear Emission of a Z boson

The ATLAS Experiment

One of four main experiments at the Large Hadron Collider (LHC).

- LHC is the world's largest and most powerful particle collider.
- ATLAS is a general-purpose detector. \rightarrow Measures large range of physics.
- Measures the products of proton-proton collisions.


Z Bosons and Jets

Z Bosons

- One of the 4 particles mediating the electroweak force.
- > Electrical charge of zero.
- > 10% of decays into charged leptons.
- Clean and precise signatures of electron and muon decays.

Jets

- Streams of particles produced when a quark or gluon is an outgoing particle of collision.
- Quarks and gluons hadronize and create a series of different mesons.
- \triangleright Are measured in the general shape of a cone called jets.

Collinear Z + Jets Analysis

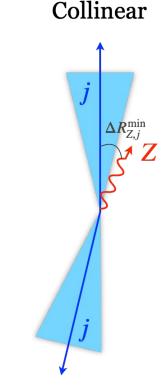
Analysis of the full Run 2 ATLAS dataset at $\sqrt{s} = 13$ TeV. → Proton-proton collisions collected in 2015-2018.

Measure events with Z boson and high transverse-momentum ($p_{\rm T}$) jets. \rightarrow Z decaying to e^+e^- or $\mu^+\mu^-$ pairs.

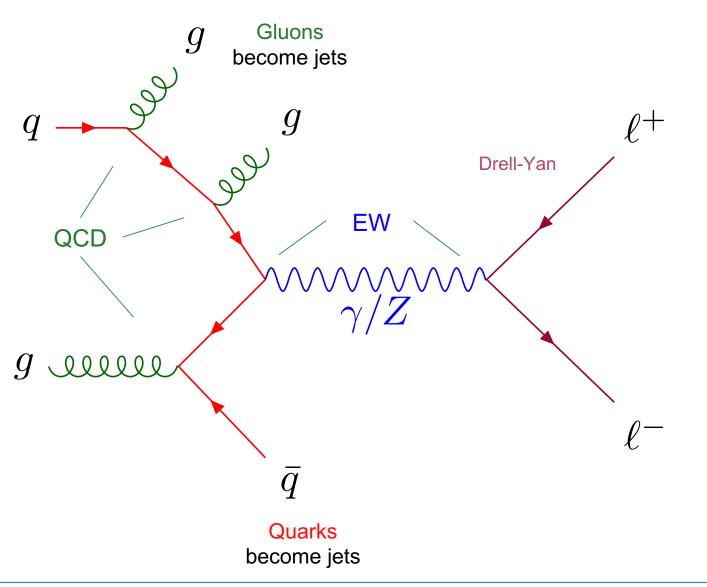
 $\rightarrow p_{\rm T}(jet) \ge 100 \text{ GeV}.$

→ ATLAS analyses often consider jets with $p_{\rm T}(jet) \ge 20 - 60$ GeV.

➢ Focus on extreme selection where most energetic jet has p_T(jet) ≥ 500 GeV.
 → Enhances collinear emission of Z boson from a jet.
 → Collinear Z boson emission is extreme phase space and poorly understood.


> Focus on measuring kinematics between Z boson and closest jet.

> Measure differential cross-section distributions for 13 observables.

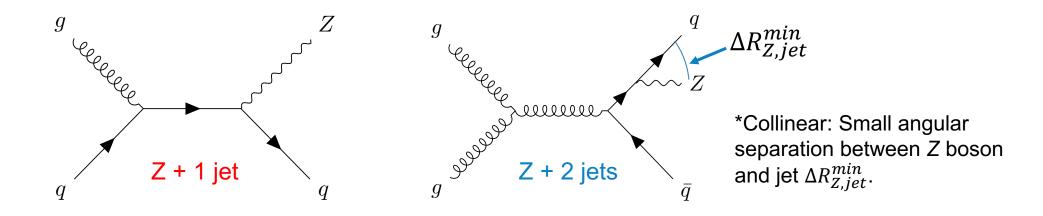

> Measure production cross section of Z + high transverse-momentum jets.

Cross-section measurements for the production of a Z boson in association with high-transverse-momentum jets in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

> The ATLAS Collaboration arXiv:2205.02597 STDM-2018-49

Z Bosons in Association with Jets

▷ LHC is the largest Z + jets factory in the world.
→ Produced about 7-8 billion Z bosons in **Run 2**.

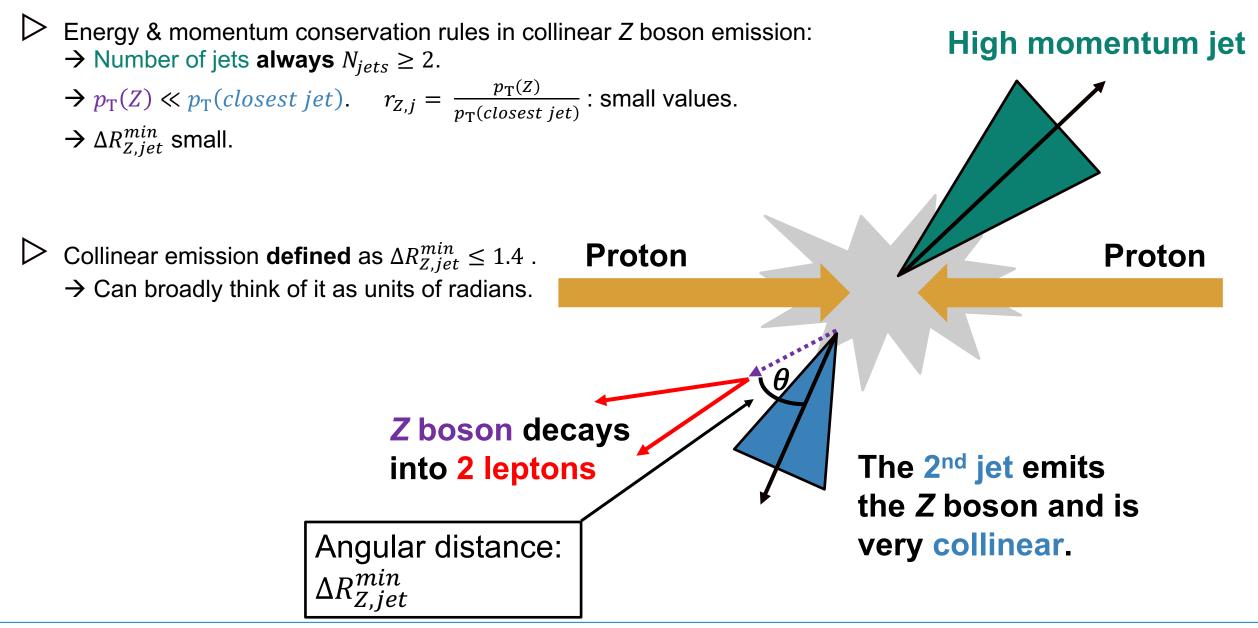

Perfect experimental conditions to test quantum chromodynamics (QCD) and electroweak (EW) interactions.

 \triangleright Encompasses wide family of different physics.

 \triangleright Significant backgrounds to many processes.

> Sensitive to high order effects at high energies.

High Transverse Momentum Jets


Z + 2 jet process suppressed by an extra order of α_s but ...
Ratio of Z + 2 jets to Z + 1 jet goes as $\alpha_s \ln^2 \frac{p_T(jet)}{M_Z}$ in collinear Z boson emissions.

 \triangleright With large $p_{\rm T}(jet)$, Z + 2 jets no longer suppressed vs Z + 1 jet.

Focus on very high $p_T(jet)$ events to study the collinear emissions. $\rightarrow p_T(leading \ jet) \ge 500 \text{ GeV}$.

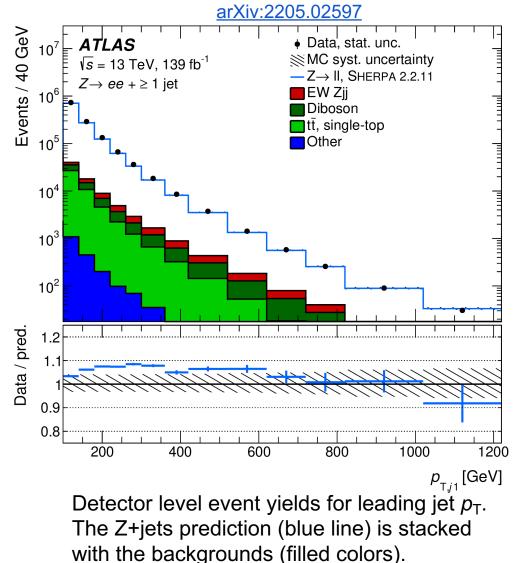
Z + 2 jets offer unique event kinematics (collinear Z boson emission) which we can study!
 No longer suppressed with high jet transverse momenta.

Collinear Z + Jets Signatures

Measuring Cross Sections

> In the i^{th} bin of a given observable, the fiducial cross section is:

$$\sigma_i = \frac{N_i^{observed} - N_i^{background}}{C_i \mathcal{L}}$$


 $\rightarrow N_i^{\text{observed}}$ is the number of observed events,

 $\rightarrow N_i^{\text{background}}$ is the estimated number of background events,

 $\rightarrow \mathcal{L}$ the luminosity and

 \rightarrow C_i a transfer function which corrects for detector effects to get the true (fiducial) cross section.

- $> C_i$ is a complicated function of event kinematics and detector performance, estimated with Monte Carlo (MC) simulation.
- > Leading backgrounds are from $t\bar{t}$ and diboson processes, estimated with MC and data-driven methods.

Corresponds to N_i^{observed}

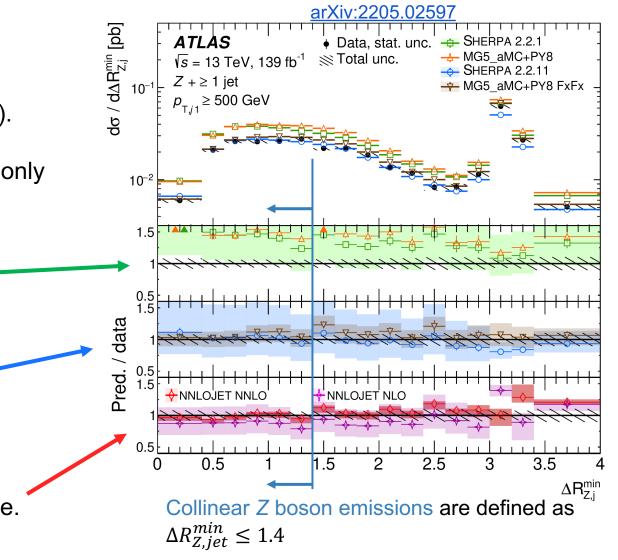
Key Results

Data is compared against 6 different predictions.
→ Green and Orange: Default ATLAS MC (~5 years old).
→ Blue and Brown: State-of-the-art MC (2022).
→ Red and Purple: Fixed order calculations. NNLO can only predict Z + up to 3 jets, while NLO only Z + up to 2 jets.

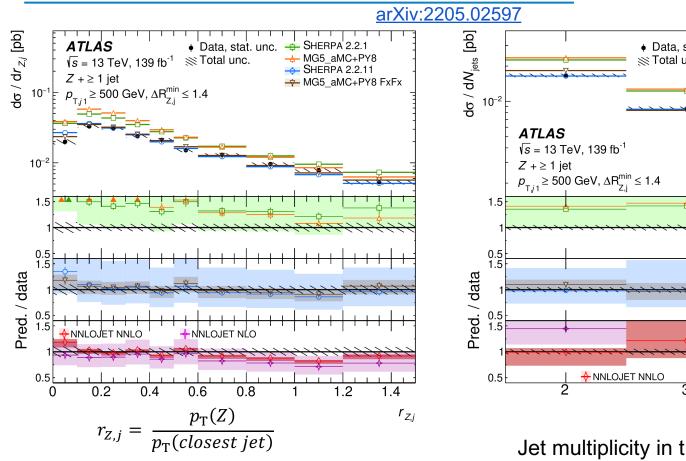
Green and Orange overestimate data.
 → 50% modelling uncertainties!

Very good central predictions from state-of-the-art MC.
 Brown very precise.
 → Incredible improvements over previous generation!

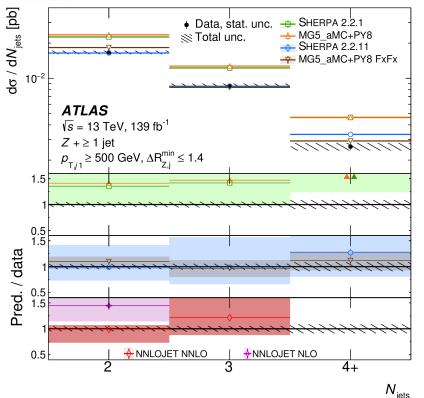
> NNLO prediction is most precise and often most accurate.


> Data measurements are more precise than the predictions.

Data uncertainty about 5%.


→ Statistical uncertainty leading at 3%.

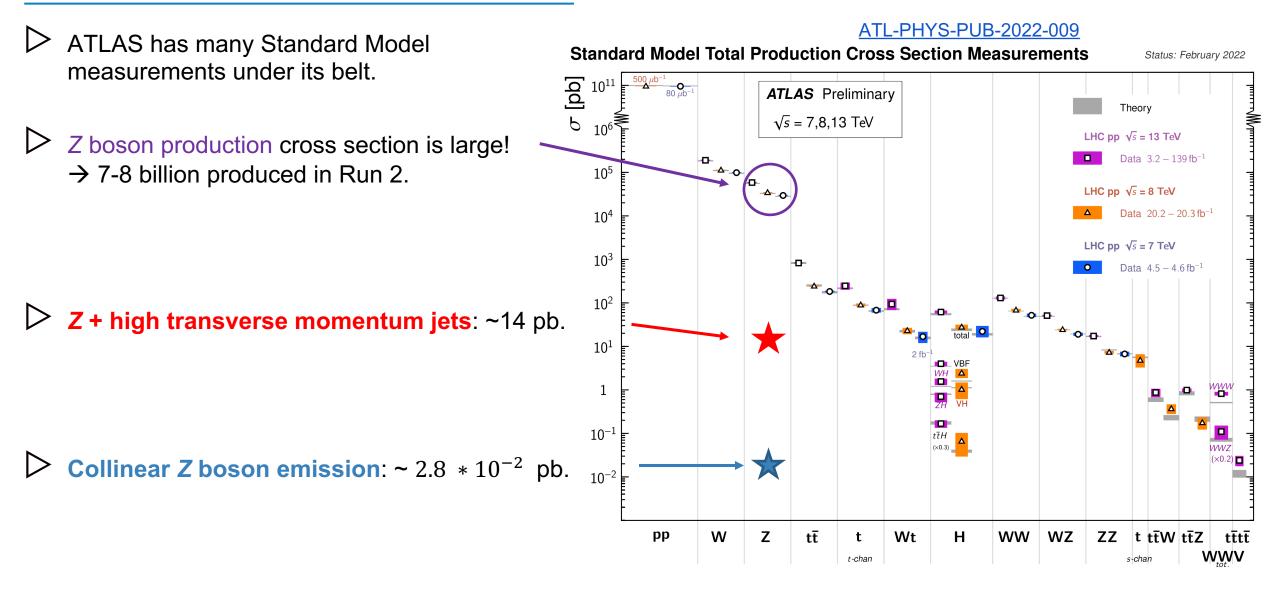
Details on improvements in Sherpa2.2.11


and MadGraph FxFx. arXiv:2112.09588

Collinear Z emission Results

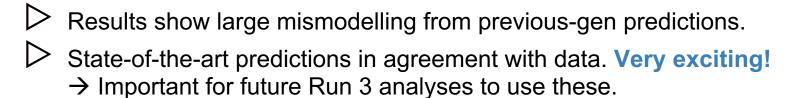
 $r_{Z,i}$ in the Collinear region. Collinear Z boson emissions are expected with *r_{Z,j}* << 1.

Jet multiplicity in the *Collinear* region. Collinear Z boson emissions are expected to always have $N_{jets} \ge 2$.


Both distributions confirm expected kinematics of collinear Z boson emission from a jet!

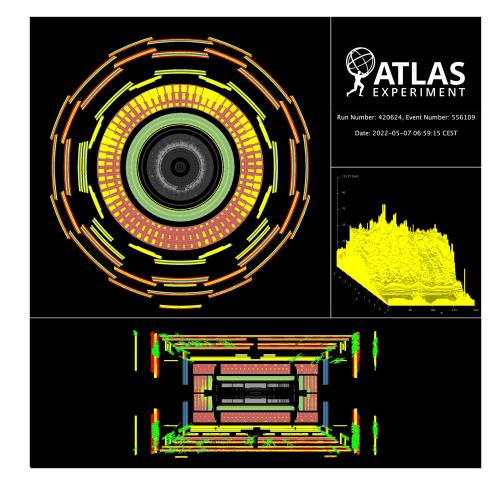
|> No collinear data events measured with exactly 1 jet.

State-of-the-art MC Sherpa2.2.11 & MadGraph FxFx model collinear emissions, MadGraph FxFx with high precision.


 $\left|\right>$

Total Production Cross Sections

Conclusion


> The <u>first</u> measurement with the full Run 2 dataset measuring:
 → high transverse momentum jets and
 → collinear emission of a Z boson from a jet.

State-of-the-art predictions exhibit large modelling uncertainties. \rightarrow This data will help to improve future predictions of *Z* + jets processes and increase the precision of analyses: other *Z* + jets, Higgs, new physics...

LHC Run 3 and High-Luminosity phase will open the way for much higher statistics.

- \rightarrow Further push the precision of these measurement.
- \rightarrow Explore more and more extreme phase spaces.

ATLAS Run 3 preparation beam splash event display of May 7th 2022. The start of exciting times with Run 3.

Backup

Uncertainties

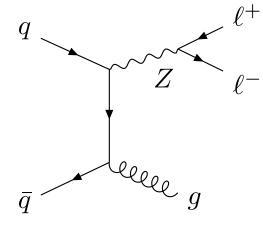
> Considered over 70 different sources of uncertainties. \rightarrow Mix of experimental, theoretical and statistical.

For collinear Z boson emission, statistical uncertainty is largest.
 → Good precision with 5% total uncertainty.

 > Data uncertainties smaller than those of predictions.
 → Can use data to help improve predictions!

Uncertainty source $[\%]$	Collinear
JES/JER	2.8
Lepton	1.4
Luminosity	1.7
Pile-up	0.4
Unfolding	1.1
Background modelling	2.0
Signal modelling	1.1
Total syst. uncertainty	4.4
Data stat. uncertainty	2.9
Total uncertainty	5.3

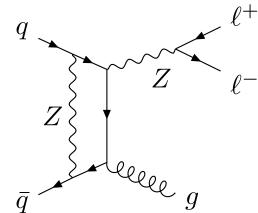
$$\sigma_i = \frac{N_i^{observed} - N_i^{background}}{C_i \mathcal{L}}$$

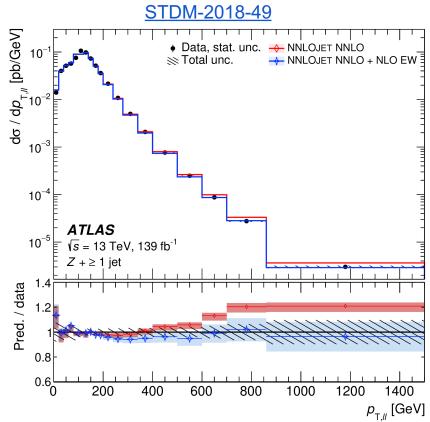


Virtual Electroweak Corrections

 \rightarrow Largest contribution in very energetic Z + 1 jet events.

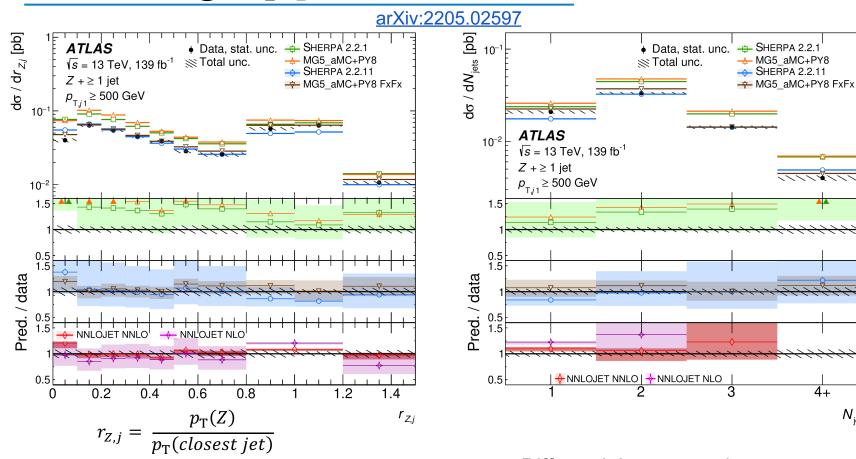
→ Correction can reach ~20% in high $p_{\rm T}(jet)$ and $p_{\rm T}(Z)$ regions.


> Sherpa2.2.11 includes NLO virtual EW corrections to the cross sections.


Leading Order Z + 1 jet production.

 \rightarrow Negative contribution.

Effect grows as Q^2 .


Next-to-leading order virtual correction to Z + 1 jet production.

> Uncertainty is usually only few %.

Only NNLOJet @ NNLO is precise enough to be sensitive to these NLO EW corrections.

Z + high p_T jets Results

Combination of collinear and back-to-back Z+1 jet events.

Differential cross section as a function of $r_{Z,j}$ in the *high*- p_T region. Large (collinear) population at low values and peak of Z+1 jet events around 1.

Differential cross section as a function of jet multiplicity in the high p_{T} region. Mostly populated by 1 and 2 jet events.

> Details on improvements in Sherpa2.2.11 and MadGraph FxFx in respect to their previous versions. arXiv:2112.09588

4+

N_{iets}

Improvements in the MC

arXiv:2112.09588

Improvements in Sherpa2.2.11 mostly due to improvements in parton showering.

	Sherpa 2.2.1	Sherpa 2.2.11	
Configuration	Sherpa 2.2.1	Sherpa 2.2.11	
Generator version PDF set	Sherpa 2.2.1 NNPDF3.0nnlo	Sherpa 2.2.11 NNPDF3.0nnlo	
EW_input scheme	_Effective	$-\sin^2 \theta_{\rm eff}$	
QCD accuracy	0–2j@NLO+3,4j@LO	0-2j@NLO+3,4,5j@LO	
$\rm NLO EW_{virt}$ corrections	No	Yes	
Subtraction scheme	Default	Modified Catani–Seymour	Biggest change at
Unordered histories allowed	Yes	No	_ 00 0
Scale for H -events	STRICT_METS	$H_{ m T}'$	high pT(jet) and pT(<i>Z</i>)
Gluon colour/spin exact matching	Yes	No	
Core process for K -factor	$2 \rightarrow 4$	$2 \rightarrow 2$	
Phase-space strategy	Sliced in $\max(H_{\mathrm{T}}, p_{\mathrm{T}}^{V})$	Analytic enhancement	

MadGraph comparisons like apple to oranges.

MadGraph is LO prediction normalized to inclusive cross sections.

New MadGraph FxFx uses FxFx matching + merging scheme, up to 3partons at NLO

Process	Generator	Order pQCD	
Signal			
$Z \to \ell \ell \ (\ell = e, \mu)$	Sherpa 2.2.11	0–2p NLO, 3–5p LO	
$Z o \ell \ell \ (\ell = e, \mu)$	MG5_AMC+Py8 FxFx	0-3p NLO	
$\overline{Z \to \ell \ell \ (\ell = e, \mu)}$	SHERPA 2.2.1	0–2p NLO, 3–4p LO	
$Z o \ell \ell \ (\ell = e, \mu)$	MG5_AMC+Py8 CKKWL	0-4p LO	

Measured Event Yields

arXiv:2205.02597

$Z \to e^+ e^-$	Inclusive	$High-p_{\mathrm{T}}$	Collinear	Back-to-back	$High-S_{\mathrm{T}}$
Z + jets	$ 1171000 \pm 49000$	$6150~\pm~310$	$2520~\pm~120$	$2520~\pm~150$	18300 ± 800
$tar{t}$	$43400~\pm~1300$	$209~\pm~16$	$136~\pm~13$	$47.2~\pm~7.5$	$917~\pm~41$
Diboson	$19530~\pm~750$	$428~\pm~29$	$183~\pm~16$	$167~\pm~16$	$1008~\pm~53$
${ m EW}~Zjj$	$13270~\pm~500$	$312~\pm~23$	$102~\pm~11$	135 ± 14	$789~\pm~43$
\mathbf{Single} -top	$2430~\pm~160$	$27.9~\pm~5.5$	$14.0~\pm~3.8$	$9.8~\pm~3.2$	$54.2~\pm~8.2$
$Z \to \tau \tau$	$515~\pm~37$	$4.6~\pm~4.2$	$1.6~\pm~2.1$	$2.2~\pm~1.7$	$10.6~\pm~6.2$
W + jets	$93~\pm~16$	$3.4~\pm~1.9$	$0.3~\pm~0.6$	$2.9~\pm~1.7$	3.4 ± 1.9
$V+\gamma$	$1413~\pm~83$	14.2 ± 4.3	$6.5~\pm~2.6$	$5.1~\pm~2.3$	$34.1~\pm~7.3$
Total predicted	1252000 ± 51000	$7150~\pm~350$	$2970~\pm~130$	$2890~\pm~170$	21100 ± 880
Data	1312145	7539	2955	3231	21 746
$\overline{Z \to \mu^+ \mu^-}$	Inclusive	$High-p_{\mathrm{T}}$	Collinear	Back-to-back	High-S _T
$\frac{\overline{Z \to \mu^+ \mu^-}}{Z + \text{jets}}$	$\begin{array}{ c c c c }\hline Inclusive \\ \hline 1537000\ \pm\ 63000 \end{array}$	$ \begin{array}{ c c } High-p_{\rm T} \\ 6700 \pm 300 \end{array} $	$\frac{Collinear}{2950~\pm~130}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c }\hline High-S_{\rm T}\\ \hline 23110\ \pm\ 920 \end{array}$
	l				
Z + jets	$ 1537000 \pm 63000$	6700 ± 300	$2950~\pm~130$	2420 ± 120	$ 23110 \pm 920$
Z + jets $t\bar{t}$	$\begin{vmatrix} 1537000 \ \pm \ 63000 \\ 55400 \ \pm \ 1300 \end{vmatrix}$	$ \begin{array}{r} 6700 \pm 300 \\ 209 \pm 16 \end{array} $	$\begin{array}{r} 2950 \ \pm \ 130 \\ 142 \ \pm \ 12 \end{array}$	$\begin{array}{r} 2420 \ \pm \ 120 \\ 39.1 \ \pm \ 6.6 \end{array}$	$ \begin{array}{r} 23110 \pm 920 \\ 1058 \pm 41 \end{array} $
Z + jets $t\bar{t}$ Diboson	$\begin{vmatrix} 1537000 \ \pm \ 63000 \\ 55400 \ \pm \ 1300 \\ 24160 \ \pm \ 870 \end{vmatrix}$	$ \begin{array}{r} 6700 \pm 300 \\ 209 \pm 16 \\ 438 \pm 27 \end{array} $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{r} 23110 \pm 920 \\ 1058 \pm 41 \\ 1149 \pm 55 \end{array} $
Z + jets $t\bar{t}$ Diboson EW Zjj	$\begin{vmatrix} 1537000 \ \pm \ 63000 \\ 55400 \ \pm \ 1300 \\ 24160 \ \pm \ 870 \\ 17020 \ \pm \ 580 \end{vmatrix}$	$ \begin{array}{r} 6700 \pm 300 \\ 209 \pm 16 \\ 438 \pm 27 \\ 328 \pm 22 \end{array} $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{r} 23110 \pm 920 \\ 1058 \pm 41 \\ 1149 \pm 55 \\ 915 \pm 45 \end{array} $
Z + jets $t\bar{t}$ Diboson EW Zjj Single-top	$\begin{vmatrix} 1537000 \ \pm \ 63000 \\ 55400 \ \pm \ 1300 \\ 24160 \ \pm \ 870 \\ 17020 \ \pm \ 580 \\ 3110 \ \pm \ 190 \end{vmatrix}$	$\begin{vmatrix} 6700 \pm 300 \\ 209 \pm 16 \\ 438 \pm 27 \\ 328 \pm 22 \\ 29.1 \pm 5.5 \end{vmatrix}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 2420 \ \pm \ 120 \\ 39.1 \ \pm \ 6.6 \\ 157 \ \pm \ 14 \\ 134 \ \pm \ 13 \\ 11.2 \ \pm \ 3.5 \end{array}$	$ \begin{array}{r} 23110 \pm 920 \\ 1058 \pm 41 \\ 1149 \pm 55 \\ 915 \pm 45 \\ 70.0 \pm 9.2 \end{array} $
$Z + jets$ $t\bar{t}$ Diboson $EW \ Zjj$ Single-top $Z \to \tau\tau$	$\begin{vmatrix} 1537000 \ \pm \ 63000 \\ 55400 \ \pm \ 1300 \\ 24160 \ \pm \ 870 \\ 17020 \ \pm \ 580 \\ 3110 \ \pm \ 190 \\ 460 \ \pm \ 33 \end{vmatrix}$	$\begin{vmatrix} 6700 \pm 300 \\ 209 \pm 16 \\ 438 \pm 27 \\ 328 \pm 22 \\ 29.1 \pm 5.5 \\ 3.5 \pm 4.0 \end{vmatrix}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Z + jets $t\bar{t}$ Diboson EW Zjj Single-top $Z \rightarrow \tau\tau$ W + jets	$\begin{vmatrix} 1537000 \ \pm \ 63000 \\ 55400 \ \pm \ 1300 \\ 24160 \ \pm \ 870 \\ 17020 \ \pm \ 580 \\ 3110 \ \pm \ 190 \\ 460 \ \pm \ 33 \\ 128 \ \pm \ 14 \end{vmatrix}$	$\begin{vmatrix} 6700 \pm 300 \\ 209 \pm 16 \\ 438 \pm 27 \\ 328 \pm 22 \\ 29.1 \pm 5.5 \\ 3.5 \pm 4.0 \\ 1.9 \pm 1.4 \end{vmatrix}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{r} 23110 \pm 920 \\ 1058 \pm 41 \\ 1149 \pm 55 \\ 915 \pm 45 \\ 70.0 \pm 9.2 \\ 8.8 \pm 5.4 \\ 2.7 \pm 2.0 \end{array} $

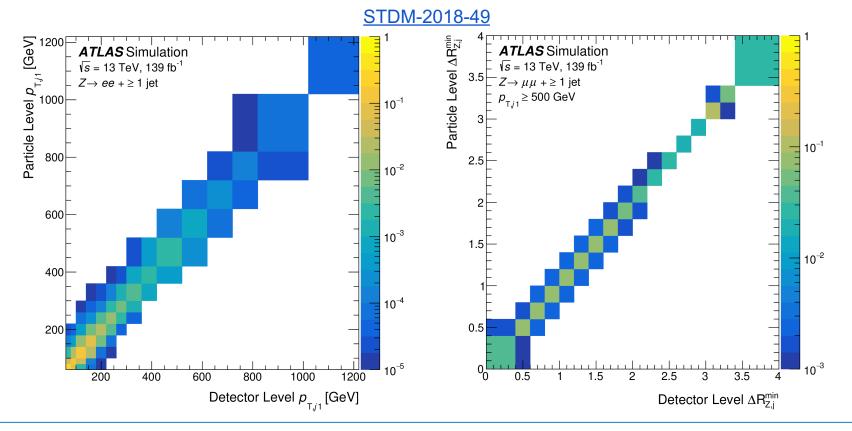
Total Production Cross Sections

Measured Z boson production with higher transverse momentum jets in 5 different kinematic regions.

Z + high transverse momentum jets: ~14 pb.

Collinear Z boson emission: ~ 2.8×10^{-2} pb.

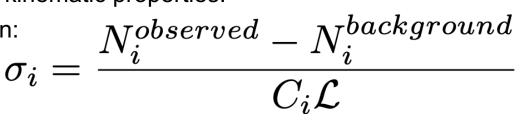
Data uncertainty is much smaller than the predictions.

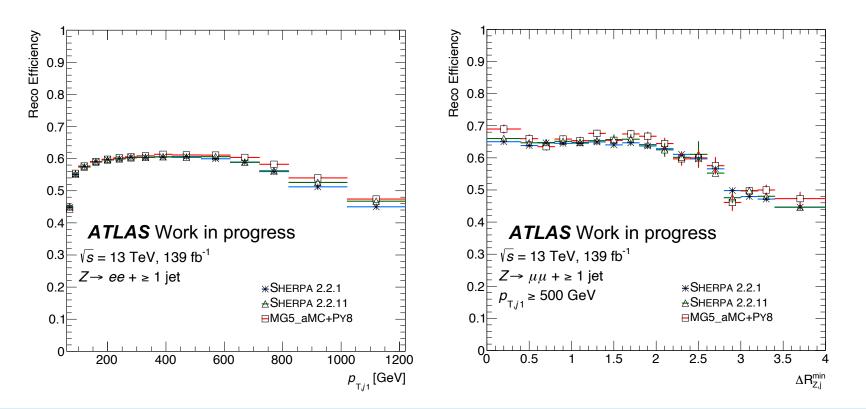

			arXiv:2205.02	<u>2597</u>		
1			Inclusive $Z + jets$			
	Data	13.90	$\pm 0.01 \; (\text{stat})$	$\pm 0.47 \text{ (syst)}$		$^{\rm pb}$
	Sherpa 2.2.11	13.3	$^{+0.2}_{-0.2}$ (PDF) $^{+0.1}_{+0.1}$ (PDF)	$^{+3.1}_{-1.8}$ (Scale) $^{+0.8}_{+0.8}$ (Scale)	$\pm \le 0.1 \; (\text{EW})$	$_{\rm pb}$
L	MG5_AMC+Py8 FxFx	14.5	-0.1 (FDF)	$^{+0.8}_{-1.2}$ (Scale)		$_{\rm pb}$
L	Sherpa 2.2.1	13.8	$^{+0.5}_{-0.5} ({ m PDF})$	$_{-3.4}$ (Scale)		$_{\rm pb}$
L	NNLOJET@NNLO	13.83		$^{+0.18}_{-0.27}$ (Scale)		$_{\rm pb}$
Ż	NNLOJET@NLO	13.5		$^{+1.1}_{-0.9}$ (Scale)		$^{\mathrm{pb}}$
_			$High-p_{\mathrm{T}}: p_{\mathrm{T},j1} \ge 500 \ \mathrm{G}$			
	Data	72.3	± 1.5 (stat)	± 3.5 (syst)		fb
	Sherpa 2.2.11	69	$^{+2}_{-1}$ (PDF) $^{+4}_{+4}$ (PDF)	$^{+28}_{-17}$ (Scale) $^{+9}$ (Scale)	$^{+2}_{-2}$ (EW)	$_{\rm fb}$
	$MG5_AMC+Py8 FxFx$	78	$^{+4}_{-1}$ (PDF)	$^{+9}_{-12}$ (Scale) $^{+40}$ (Scale)		$_{\rm fb}$
	Sherpa 2.2.1	95	$^{+4}_{-3}$ (PDF)	-26 (Duate)		$_{\rm fb}$
	NNLOJET@NNLO	76		$^{+10}_{-12}$ (Scale)		$_{\rm fb}$
	NNLOJET@NLO	71		$^{+14}_{-11}$ (Scale)		$_{\rm fb}$
Ī		Colline	ear: High- $p_{\rm T}$ and $\Delta R_{\rm T}^{\rm i}$	$\sum_{z,i}^{\min} \leq 1.4$		
ŀ	Data	27.9	± 0.8 (stat)	± 1.2 (syst)		fb
1	Sherpa 2.2.11	28	$^{+1}_{-1}$ (PDF)	$^{+14}_{-8}$ (Scale) $^{+3.1}_{+3.1}$ (Scale)	$\pm \le 1 \; (EW)$	fb
	MG5_AMC+Py8 FxFx	29.6	$^{+1.3}_{-0.3}$ (PDF) $^{+2}_{+2}$ (PDF)	$_{-4.3}$ (Scale)		$_{\rm fb}$
	Sherpa 2.2.1	39	$^{+2}_{-1}$ (PDF)	$^{+18}_{-11}$ (Scale)		$_{\rm fb}$
L	NNLOJET@NNLO	27.0		$^{+5.7}_{-7.2}$ (Scale)		$_{\rm fb}$
	NNLOJET@NLO	24.1		$^{+7.2}_{+7.0}$ (Scale) $^{+5.1}_{-5.1}$ (Scale)		$_{\rm fb}$
		Back-to-	back: High- $p_{\rm T}$ and Δ .	$R_{Z,i}^{\min} \ge 2.0$		
	Data	31.6	± 0.8 (stat)	\pm 1.7 (syst)		fb
	Sherpa 2.2.11	28.1	$^{+0.6}_{-0.3}$ (PDF)	$^{+7.9}_{-4.9}$ (Scale)	$^{+1.4}_{-1.4}$ (EW)	$_{\mathrm{fb}}$
	MG5_AMC+Py8 FxFx	34.4	$^{+1.6}_{-0.3}$ (PDF)	$^{+4.6}_{-5.6}$ (Scale)		$_{\rm fb}$
	Sherpa 2.2.1	38	$^{+2}_{-1}$ (PDF)	$^{+15}_{-10}$ (Scale)		fb
	NNLOJET@NNLO	35.3		$^{+1.9}_{-2.4}$ (Scale)		$_{\rm fb}$
	NNLOJET@NLO	36.0		$^{+3.5}_{-3.3}$ (Scale)		$^{\rm fb}$
$High-S_{\rm T}: S_{\rm T} \ge 600 {\rm ~GeV}$						
_	Data	226.0	± 2.6 (stat)	± 9.5 (syst)		$^{\mathrm{fb}}$
	Sherpa 2.2.11	220	$^{+10}_{-10}$ (PDF)	$^{+110}_{-60}$ (Scale)	$\pm \le 10 \text{ (EW)}$	$^{\mathrm{fb}}$
	$MG5_AMC+Py8 FxFx$	247	$^{+10}_{-2}$ (PDF)	$^{+30}_{-37}$ (Scale)		$_{\rm fb}$
	Sherpa 2.2.1	280	$^{+10}_{-10}$ (PDF)	$^{+130}_{-80}$ (Scale)		$_{\rm fb}$
	NNLOJET@NNLO	223		$^{+43}_{-47}$ (Scale)		$_{\rm fb}$
	NNLOJET@NLO	168		$^{+45}_{-33}$ (Scale)		$^{\mathrm{fb}}$

Unfolding: Response Matrices

Response matrices are used during unfolding to erase detector effects and produce fiducial cross sections.

> Significant aspect of the transfer function C_i in the cross section: $\sigma_i = rac{N_i^{observed} - N_i^{background}}{C_i \mathcal{L}}$


arsigma Diagonal distributions are good and mean that the detector measures an event in the same bin as the truth.


Unfolding: Efficiencies

> The efficiency of the detector of measuring events with certain kinematic properties.

Significant aspect of the transfer function C_i in the cross section:

 \triangleright Usually want the distributions to be flat with high efficiencies.

