

University of Victoria

Improving the Super-Kamiokande PMT modelling using the the photosensor test facility (PTF)

$\bullet \bullet \bullet$

Vincent Gousy-Leblanc, Elena Cornick,Skylar Wingfelder, Matej Pavin, Xiaoyue Li, Ryosuke Akutsu, Thomas Lindner, Patrick de Perio, Akira Konaka June 8th

Outline

- Context
- Why?
 - Motivations for measurements
- How?
 - Overview of the set up
- What ?
 - Overview of the measurements
- Results
 - Integration of measurements into simulation

Super-Kamiokande experiment

 Goals: Detect neutrino mixing parameters, proton decay, search for dark matter

(MC-Data)/Data (%) Stop-µ, (multi-Stop-µ (sub-Ge\ GeV) Decay-e 10² 10 10 Momentum [MeV] Photocathode hit region See M.Hartz talk

Motivations for PTF measurements

- Systematic error for Super-K high energy analysis (~2%)
- Can these be partially explained by PMT response mismodelling (eg. angular/magnetic field/polarization/wavelength effects)
 - Qualitative example •
- Will become even more important for next • generation neutrino experiment (no longer limited by statistical uncertainties)
 - 1% required for Hyper-k •

The Photosensor Test facility (PTF) at TRIUMF

- 3 pairs of Helmholtz coils (one in each direction)
 Can control magnetic field
- 2 optical boxs (laser, sensors to measure tilt, rotation angle and magnetic field)
- DAQ to perform 2D scans of PMT
- Angular response and reflection measurements

Potential measurements of PTF

- PTF will be able to measure and separate external variables
 - Magnetic field
 - Angular dependance
 - Polarization dependance
 - Wavelenght dependance

DE

Polarization measurements

nb of photoelectron pulse nb of pulse

- Effect of polarization seems to be diagonal
 - Expectations: edges have more reflections so should be more affected
- Further investigation is required

Integration of measurements into simulations

 $\bullet \bullet \bullet$

Simulation pipeline

- Simplest implementation :
 - Replace Uniform DE by position dependant DE

Uniform DE implemented

Simulation pipeline

- Simplest implementation :
 - Replace Uniform DE by position dependant DE

PMT measurements done in 2020 (in water, 0mG, no acrylic)

Modelling the experiment

Integration of data into simulation

Step 4: Test empirical model (first cross check seems to be good)

Integration of data into simulations (2)

Total charge horizontal vs vertical case

Total charge horizontal vs vertical case (2)

- Decay electron
 - Nominal
 - Mean ratio :1.03
 - PTF
 - Mean ratio: 1.02

Difference

1.09%

• Angular distribution

Conclusion

• The PTF facility was rebuild and improve to measure the PMT response

- A better understanding of PMT response could decrease/characterize the systematic uncertainties associated to the detector
- More measurements to come soon !
- Integration of measurements into simulation was started
 - Only MC-MC comparison and for simple case
 - An effect of ~2% was seen but more measurements are required

Thank you

Back up

Total charge horizontal vs vertical case

Motivations for PTF meas

- Significant systematic error for Super-K high energy analysis (~2%)
- Also for low energy solar neutrino (~0.5%)
- Can these be <u>partially</u> explained by PMT response mismodelling (eg. angular/magnetic field/polarization/wavelength effects)
 - Part of bottom-up calibration
 - Qualitative example
- Will become even more important for next generation neutrino experiment (no longer limited by statisticals uncertainties)

Phys.Rev.D94.052010

Compensating the magnetic field

- Try to make the magnetic field as uniform as possible
 - Using G-IRON passive shielding
- Degauss procedure is needed

 $B_{x}[mG]$

Coil 3 voltage [V]

Coil 4 voltage [V]

0

ò

 Metals structure surrounding PTF creates their own magnetic field

0.5

0.3

0.2

0.1 -

0.1

0.2

0.3

X[m]

0.4

 $B_{x}[mG]$

Needs to be simultaneously for all directions
 1-Voltage scan
 2-Spatial scan :

0.3

0.2

-0.1

-0.2

-0.3

۲[m]

Example of a degauss procedure

Compensation of the magnetic field

- Compensated to 0 but also different offset
 - Input from Super-K magnetic field measurements
 - Seems to work within 20mG or so
 - Z direction has a larger gradient

	Compensation table								
ſ	Compensation (V)	Coil 1	Coil 2	Coil 3	Coil 4	Coil5	Coil6		
[0mG(all direction)	3.0	4.1	0.1	0.558	0.1	0.55		
ſ	+100mG(x direction)	3.0	4.1	-1.0	-1.35	0.1	0.6		
	+50mG(x direction)	3.0	4.1	-0.5	-0.7	0.1	0.6		
	-100mG (x direction)	3.0	4.0	2.0	1.5	0.1	0.45		
[-50mG (x direction)	3.0	3.95	1.0	1.06	0.1	0.6		
	+100mG (y direction)	3.0	-3.65	0.1	0.91	2.0	1.32		
	+50mG (y direction)	3.0	3.8	0.1	0.7	0.5	1.32		
	-100mG (y direction)	3.0	3.86	0.1	0.2	-1	-1.3		
	-50mG (y direction)	3.0	4.05	0.1	0.35	-0.5	-0.7		
	+100mG (z direction)	4.0	4.8	0.1	1.228	0.1	0.42		
ſ	-100mG (z direction)	3.0	2.27	0.1	0.268	0.1	0.46		

23

Example setting X=100mG, y=0mG, Z=0mG

Effect of PMT Angular Response on Reconstruction

- Varying angular response can change the total charge
- "fixed Q": scaled overall efficiency averaged over all events to study case of no change in total charge
 - Assumes degeneracies with other detector (e.g. water) parameters are fully constrained
 - \circ Can still have ~0.5% bias in reconstructed momentum
- Different trends indicate not fully correlated between e/µ

PTF in pictures

Pipeline is ready !

- Some text file are empty, partially finished
 - Takes ~50hours for 9 text files on local cluster
- Move to something quicker for first comparaison with PTF measurements

SKG4 local coordinates system

- S and P designation are in terms of the plane of incidence of the photon (parallel vs perpendicular)
- Done for incoming photons
- Calculate incidence plane angle and randomize s or p polarization
- At the center no s or p polarization

78	+ p_t	<pre>ype = -1; // other</pre>
79	if(cosAngle==0 cosAngle==1 1./(cosAngle*cosAngle)-1<=0)
\mathbb{Z}	Polariz	ation_Type = "other";
80	else{	
81	if(<pre>Dir*Pol>0.0001) Polarization_Type = "other";</pre>
82	els	e{
83		G4ThreeVector pWaveDir = (Dir+Normal/cosAngle)/sqrt(1.
	/(cosAn	gle∗cosAngle)-1.);
84		<pre>pWaveDir = pWaveDir.unit();</pre>
85		
86		G4double Cp = pow((Pol*pWaveDir),2);
87	+	<pre>if(G4UniformRand()<cp){ ;="" p_type="1;</pre" polarization_type="p"></cp){></pre>
	}	
88	+	<pre>else{ Polarization_Type = "s"; p_type = 2; }</pre>
89		<pre>//if(G4UniformRand()<cp) ;="" before="" detsim<="" polarization_type="s" pre=""></cp)></pre>
	BUGFIX	
90		<pre>//else Polarization_Type = "p";//before DETSIM BUGFIX</pre>
91	}	

Absorption coefficient

- X polarization
- See effect of p vs s polarization
- See the maximum predicted

Potential study

- Angular scan (60°) + magnetic field
- Angular response move region of high efficiency
 - Same position but deformed ?
- Highest possible resolution (0.5cm)
 - Clearly see the effect of the temperature variations
- In terms of gantry position

 N Off center scan

Compensation of the magnetic field

- Compensated to 0 but also different offset
 - Input from Super-K magnetic field measurements
 - Seems to work within 20mG or so
 - Z direction has a larger gradient

	Compensation table								
ſ	Compensation (V)	Coil 1	Coil 2	Coil 3	Coil 4	Coil5	Coil6		
ſ	0mG(all direction)	3.0	4.1	0.1	0.558	0.1	0.55		
ſ	+100mG(x direction)	3.0	4.1	-1.0	-1.35	0.1	0.6		
	+50mG(x direction)	3.0	4.1	-0.5	-0.7	0.1	0.6		
	-100mG (x direction)	3.0	4.0	2.0	1.5	0.1	0.45		
[-50mG (x direction)	3.0	3.95	1.0	1.06	0.1	0.6		
	+100mG (y direction)	3.0	-3.65	0.1	0.91	2.0	1.32		
	+50mG (y direction)	3.0	3.8	0.1	0.7	0.5	1.32		
	-100mG (y direction)	3.0	3.86	0.1	0.2	-1	-1.3		
	-50mG (y direction)	3.0	4.05	0.1	0.35	-0.5	-0.7		
	+100mG (z direction)	4.0	4.8	0.1	1.228	0.1	0.42		
ſ	-100mG (z direction)	3.0	2.27	0.1	0.268	0.1	0.46		

30

Example setting X=100mG, y=0mG, Z=0mG

No compensation effect

- Uncompensated magnetic field
- DE plot were generated
 - Results looks good
 - Analysis pipeline is replicating previous results
 - All PMT are working as expected

The magnetic field in Kamioka

- Earth field is compensated in Super-K
- Older measurements (2013)
 - Showed \pm 80 mG in Z, \pm 100 mG in Y and \pm 80 mG in X
- Newer measurements ~
 - Showed \pm 100 mG in 3 directions

Does it as an impact ? YES!

Figure 1: Distribution of magnitude of the residual magnetic field at different locations in the detector. The left figure shows the magnitude; the right figures show the value along the usual SK coordinate system axes.

Data taking plan

- Relocation happened in 2020
 - Delays due to COVID and unexpected problems

0.15

0.10

0.05

0.00

0.7

0.6 X position [m]

- Finally ready for data taking
 - First water scan was done !

Countrof photoelectron pulse The number of pulse

First water measurements! [m] 0.7 0.6 0.25 0.20 0.5

0.4 0.3

0.2

0.1

0.0 0.1 0.2 0.3 0.4 0.5

Total

18

72

234

162

54

54

3

• Decay electron

- Nominal
- Mean ratio :1.03

• PTF

- Mean ratio: 1.02
- Difference: ~1.09%
- Angular distribution

Decay electron Nominal Mean ratio :1.03 PTF Mean ratio: 1.02 Difference: ~1.09% Angular distribution