

A STUDY OF HADRONIC TAGGED $B \rightarrow D^{(*)} \ell \nu$ At the belle II EXPERIMENT

Hannah Wakeling McGill University, Montréal hannah.wakeling@mail.mcgill.ca

Traditional Territory Acknowledgement

McGill is situated on unceded, Kanien'kehá:ka traditional territory. This means that this land was taken, not paid for or given by the Kanien'kehá:ka people.

This site has long served as a site of meeting and exchange amongst Indigenous peoples, including the Haudenosaunee and Anishinabeg nations. Through this acknowledgement I hope to respect the diverse Indigenous peoples connected to this territory on which I work and live in today.

The Belle II Experiment & SuperKEKB

- Asymmetric e^-e^+ collider at 7 GeV and 4 GeV
- B meson factory (~1.1x10⁹ $B\overline{B}$ pairs per ab⁻¹) 1 b = 100 fm²
- Target luminosity of 50 ab⁻¹ (Belle ~710 fb⁻¹, BaBar ~424 fb⁻¹)
- Studying *B*, *D* and τ physics, hadron spectroscopy and dark-sector searches

A hadronic tagged $B \rightarrow D^{(*)}\ell_{V}$ | CAP Congress 2022 | hannah.wakeling@physics.mcgill.ca

Semileptonic decays

• Decays with 1 or more hadrons, 1 charged lepton l and corresponding neutrinos v; mediated by the W boson in the

Standard Model (SM) W^{-}

- b → clv and b → ulv transitions are crucial for the determination of Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix elements
- The v are inferred as missing energy in our detector

 $V_{
m CKM} = \left[egin{array}{c|c} |V_{ud}| & |V_{us}| & |V_{ub}| \ |V_{cd}| & |V_{cs}| & |V_{cb}| \ |V_{td}| & |V_{ts}| & |V_{tb}| \end{array}
ight]$

 $V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$

A unitary CKM triangle highlighting $|V_{cb}|$ in $b \rightarrow cl_V$

Semileptonic decays

- Measured inclusively $B \to X \ell \nu$ or exclusively $B \to D^* \ell \nu$
- Existing tension between inclusive and exclusive approaches in measurements of $|V_{ub}|$ and $|V_{cb}|$
- Could be sensitive to New Physics
- Full projected Belle II dataset will be key in understanding this tension through $\overline{B^0}$ examination at higher precision and through accessing other variables

 $|V_{cb}| = (42.2 \pm 0.8) \times 10^{-3} \text{ (inclusive)}$ $|V_{cb}| = (39.5 \pm 0.9) \times 10^{-3} \text{ (exclusive)}$

(PDG values. Tension of order 3σ)

Example models: Two-Higgs Doublet Model and leptoquark model

The Belle II Physics Book arXiv:1808.10567 P.A. Zyla *et al.* (Particle Data Group).Prog. Theor. Exp. Phys. **2020**, 083C01 (2020)

 $R(D^{(*)})$

$$R(D^*) \equiv \frac{\mathcal{B}\left(B \to D^{(*)}\tau^-\overline{\nu}_{\tau}\right)}{\mathcal{B}\left(B \to D^{(*)}\ell^-\overline{\nu}_{\ell}\right)}$$

- CKM matrix elements are a significant source of uncertainty in semileptonic branching fraction measurements
- The ratio $R(D^{(*)})$ of the branching fractions cancels various sources of uncertainty! ($|V_{cb}|$ & Hadronic Form Factors)
- A very well defined value in SM, so gives sensitivity to New Physics (2HDMII, leptoquarks,...)
- * Test of Lepton Flavour Universality

Phys. Rev. D 98, 030001 (2018)

Reconstruction methods

- Untagged approach
 - Signal decay B_{sig} is reconstructed
 - Rest of event is assumed to be the other *B*
 - Very efficient but low purity
- Tagged approach (semileptonic and hadronic tags)
 - Both *B* mesons in event are reconstructed: B_{sig} and B_{tag}
 - \circ B_{tag} is exclusively reconstructed using
 - semileptonic decay modes (only partial B_{tag} knowledge)
 - hadronic decay modes (exact knowledge of the B_{tag})
 - Hadronic tagging essential in missing energy measurements

Full Event Interpretation

- A multivariate analysis (MVA) tagging algorithm with a hierarchical approach
- 200+ Boosted Decision Trees (BDT) and 10000+ B decays
- 30-50% improvement in efficiency compared to previous equivalent method at Belle
- FEI calibrated against data to obtain reconstruction efficiencies
- Hadronic FEI calibration strategy is established using $B \rightarrow X l v$ with subset of data
- Semileptonic FEI calibration and performance studies projected for summer 2022

The Full Event Interpretation arXiv:1807.08680 A Hadronic FEI Calibration arXiv:2008.06096

Belle II preliminary

${\cal B}_{\rm PDG} = (5.06\pm 0.12)\,\%$

$\operatorname{Exclusive}_{\operatorname{towards} R(D^{(*)})} \bar{B}^0 \to D^{*+} \ell \bar{\nu}_{\ell}$

- Using hadronic tagged FEI
- With $D^{*+} \rightarrow D^{0}\pi^{+}$, $D^{0} \rightarrow K^{-}\pi^{+}$ (golden decay mode)
- Signal extraction via $m_{\text{miss}}^2 = (p_{e^+e^-} p_{B_{tag}} p_{D_*} p_{\ell})^2$ $\mathcal{B}(\bar{B}^0 \to D^{*+}\ell^- \bar{\nu}_l) = (4.51 \pm 0.41_{\text{stat}} \pm 0.27_{\text{syst}} \pm 0.45_{\pi_s})\%$
- Dominant systematics:
 - slow pion efficiency $(D^{*+} \rightarrow D^0 \pi_s^+)$
 - \circ D^{**} backgrounds
- What's next?

Exclusive $B \rightarrow D^*$ | nu Decay arXiv:2008.10299

1.5

1.0

 $m_{\rm miss}^2$ [GeV²/c⁴]

2.0

2.5

PDG value P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

-0.5

0.0

0.5

A hadronic tagged $B \rightarrow D^{(*)} \ell_V \mid CAP$ Congress 2022 I hannah.wakeling@physics.mcgill.ca

3.0

$\operatorname{Exclusive}_{\operatorname{towards} R(D^{(*)})} \bar{B} \to D^{(*)} \ell \bar{\nu}_{\ell}$

- Study expanded to include more data and modes than just the golden mode.
- MVA in development for D^{**} background, crossfeed and continuum suppression.
- Study replicates and extends from the **BaBar** publication.
- Generic MC is boosted with $B \rightarrow D^{(*)} \ell \nu$, $B \rightarrow D^{(*)}\tau v$ and $B \rightarrow D^{**}\ell v$ MC.
- MVA is trained on generator truth level $B \rightarrow D^{(*)} \ell \nu$ and $B \rightarrow D^{(*)} \tau \nu$ events.

Measurement of an Excess of B -> D(*) Tau Nu Decays and Implications for Charged Higgs Bosons, arXiv:1303.0571v1

(0.2

A hadronic tagged $B \rightarrow D^{(*)} \ell_{V}$ | CAP Congress 2022 | hannah.wakeling@physics.mcgill.ca

Measurement of an Excess of B -> D(*) Tau Nu Decays and Implications for Charged Higgs Bosons, arXiv:1303.0571v1

A hadronic tagged $B \rightarrow D^{(*)} \ell_V \mid CAP$ Congress 2022 | hannah.wakeling@physics.mcgill.ca

 $R(D^{(*)})$ at Belle II

• 5σ confirmation of $R(D^{(*)})$ anomalies at 5 ab⁻¹

Using FEI:	Total Uncertainty	Belle 0.7ab ⁻¹	Belle II 5ab ⁻¹	Belle II 50ab ⁻¹
	R(D)	16%	6%	3%
	R(D*)	7%	3%	2%

- Aim of first result summer 2022
- Systematic uncertainty is dominated by
 - D** branching fractions
 - Efficiency of slow π s

- Belle II is an ideal environment in which to study semileptonic decays (with missing energy)
- Full Event Interpretation algorithm developed and calibrated, with improvements in the works
- Investigating the deviation from/consistency with the Standard Model of $B \rightarrow D^{(*)}\tau v$ and $R(D^{(*)})$.
- Potentially sensitive to indirect NP effects! Could be resolved with just a few ab⁻¹ of data!
- Relevant publications:
 - FEI Calibration <u>arXiv:2008.06096</u>
 - Exclusive $B^0 \rightarrow D^{*+} l^- v_l$ arXiv:2008.10299

Stay tuned for more this year!

Back-up