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Introduction

* A given event in ATLAS produces many particles
* Energy of particles measured in different subsystems of the detector
* Each energy has an associated uncertainty
* Energies added together to get net energy for a reconstructed object (such as a jet)

— —— 5 Enet = B + Eo + B3
1 L OE 20 T 0g, FE3*tog é

Subsystem 1 ' Subsystem 22 Subsystem 33 5Enet = \/5]25‘1 + 5]25‘2 + 5]2':73
* Less uncertainty in energy enables

* more precise measurements on fundamental particles like the Higgs Boson
* Greater reach in searches, such as the search for dark matter




ATLAS Hadronic End Cap

* Measures energy of hadrons by sampling induced showers
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Detection Mechanism

1. Charged particles from induced shower ionize liquid argon
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Pileup Noise

e LHC Plans to upgrade beam intensity in the future [1]
* Increased beam intensity => more detected events

* Energy of individual processes becomes difficult to measure
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Pileup Noise

* Noise makes it difficult to predict energy of interesting events

* Current technique used for energy prediction is the Optimal Filter technique [2]

* Optimal filter is just a convolution
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Pileup Noise
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Convolutional Neural Networks

e Discrete Convolution:

Measured Current Energy and Energy Predictions
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* The Basic Idea behind CNN

1. Apply convolution with g;|[n]
2. Add a constant (bias)

3. Apply non-linear function

ReLU |
max (0, )

* The Basic Idea behind obtaining g

1. Define “error” L (such as RMSE)

2. Evaluate VL(g1,92,...)
3. Move in direction of decreasing L
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Issues with Machine Learning

* Optimal Filter has no bias

* RMSE loss function results in the CNN making biased predictions
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New Loss Function
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Algorithm Comparison

* The Convolutional Neural Network outperforms the optimal filter

* For all different energy intervals!
* Training requires special loss function
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Algorithm Comparison

Energy [GeV]

* Convolutional Neural Network excels when pulses are close together
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Conclusion

* Optimal Filter is the presently used technique for reconstructing energy in the ATLAS
Hadronic Endcap Subsystem of ATLAS

* Perform a convolution on the measured current

* Optimal Filter performs worse in expected future LHC conditions
* Energy measurements have a greater associated uncertainty

5](5Future LHC) N 5](ECurrent LHC)

* The convolutional neural network outperforms the optimal filter in future LHC conditions
* Requires a special loss function during training
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ackup: CNN Mathematics

OUTPUT » .
INPUT 1. i represents the layer index, and f% is the number of feature maps (or dimen-
(X =a®) 52l 5 o 2D 5 @l =) T R P
At = Lo tj Lo =Y sionality) of the time series in layer i. The first and last layers have f() = 1, for
example, corresponding to a univariate time series. L is the number of layers
) i) g in the network.
z : E : 1}) ( mmn' ) + b ) ] ; ; i : (i) 1 /
J n'm 2. 7, which can take on the indices 0 to f*/ — 1 in layer i, represents the feature
m=0 n=0 . . . . . .
map (or filter) index. ¢ represents the time index for the time series.
3. 15,3m 1s the weight matrix and 0, -' is the bias term for feature map j in layer :.
FO =1 =3 2 =4 @ =1 These parameters are modified dlulng the training procedure.
— 4. n' =t —d9n where d” is the dilation rate of layer 7.
] d® =29 5. T is the size of the filter in layer . It is also typically referred to as the kernel
n size.
| S _
e S N 6. R is the activation function for layer i of the neural network. This thesis uses
(= 7;\»“#;7\:%‘,,—; =1 — the activation function R("')(.r) =0if r < 0 and R(’)(.r) =z if # > 0. This is
o e Ny | ] .
- —o5pa) L [T - known as the relu loss function.
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Backup: CNN Configuration Used

 Structure of Convolutional Neural Network (Based on WaveNet [3])
e 3 Layers (Dilation rates of 1, 3, 1 respectively)
 Filters per layer is 3, 3, 1 respectively
* Kernel size is 7, 7, 3 respectively

Allowed to break causality by 9 bunch crossings (225 ns)

100 parameters total

Layer (type) Output Shape Param #
input_10 (Inputlayer)  [(None, Neme, D1 ©
convld_18 (Conv1D) (None, None, 3) 24
convld_19 (Conv1D) (None, None, 3) 66

concat (ConvlD) (None, None, 1) 10

Total params: 10©
Trainable params: 100
Non-trainable params: @
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