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Introduction

Introduction

» Muon-induced background processes are relevant to I(h) = (I;1e =12 4 [he(=h/A2)y
dark matter and neutrino searches, as particles like < ,
. . . o e Flat-overburdan sites
neutrons can mimic signals in dark matter and § [ s »  Kamioka
neutrino detectors. u_’:fm-'-' = . Gran Sasso
§ ; v Frejus
 In the past, two methods to calculate fluxes: = [ Homestake
1. Parametrisations of data (e.g. Mei & Hime, 2006) "' F
2. Theoretical calculations (e.g. Bugaev, 2000) -
. Two issues: 107
1. Empirical fits are oversimplified S I ST S

. . . . Equivalent Vertical Depth (km.w.e.
2. No realistic uncertainties from theory quivalent Vertical Depth (km.w.¢.)

« We aim to develop a new, flexible, high-precision method to calculate these muon-induced

backgrounds that will solve both of these issues. ,



Simulation Method

Introduction Simulations Results Conclusion

Surface Muon Spectra:

* Primary cosmic rays
« Atmosphere
« Angular distributions

> MCE(Qq (Fedynitch, A, et al., 2015)

Transport Underground:

» lonisation X, > PROPOSAL (Koehne, J.-H., et al., 2013)
* Discrete losses

« Decay and stopping

Detector



Simulation Method

Simulations
Atmosphere to Surface: MCEq Surface to Underground: PROPOSAL
 One-dimensional fast cascade equation * Full Monte Carlo program that simulates the
solver. transport of leptons through long ranges of

matter quickly and with high precision.
 Use recent hadronic interaction models DDM

and SIBYLL-2.3d + Bartol errors. * Used to calculate transfer matrices.
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Calculation of the Underground Flux

Simulations
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Non-Flat Overburdens

Simulations
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Underground Intensity

Underground intensity:

Emax
I“(X,0) = j dU(EY, X, 0)dEY

Emin

Vertical-equivalent underground intensity:

ey = (=20 g 0
y(X) = (m )COS()

Results
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True vertical underground intensity calculated for
6 = 0° results in better agreement with the data

than vertical-equivalent underground intensity.

Good agreement with the data over the entire

depth range.
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Comparison to Data

Results

« DDM is better at describing shallow slant depths, and SIBYLL is better at deeper slant depths.
» Uncertainties on data are much smaller than those on theory, but systematics not included.
« Using our method, we can constrain hadronic and cosmic ray uncertainties.

Prediction
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Total Underground Flux

Total Muon Flux, ®Y (cm~2s~1)
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Results

* The total underground flux is integrated over all
energies and angles.

* This is the relevant observable for calculations
of underground muon-induced backgrounds.

« Equivalent depths for mountain labs determined
from computations for flat overburdens.

» Our calculation reproduces flat-overburden labs
(WIPP, Soudan, Boulby, SNOLAB) excellently.

 The empirical fit of Mel & Hime is reproduced
well without doing any fits to data.



Conclusion and Outlook

Conclusion

A program has been written to combine modern codes MCEq and PROPOSAL to make predictions
for muons deep underground.

* It can be used by dark matter and neutrino experiments to calculate muon underground fluxes for
labs with flat overburdens or mountains. The results match experimental data very well.

« The program is fast, precise, and flexible. It can be used for beyond what was shown here, such as
seasonal variations.

A paper will be ready for publication soon, and the code will be made public. Stay tuned!
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