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Motivation

Can we construct a model that
explains the g-2 excess and
provides a viable DM candidate?

We consider a gauged
U(1)L#_Lrextension to the SM

Introduce a new vector boson Z’

Postulate fermionic dark matter




Model Details
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Z’ couples directly to DM

Also couples to muon + tau sector

Kinetic mixing with SM photon




Established
constraints on the 7’
parameter space

 g-2 favored region shown in salmon-pink

* Key takeaway: mass of Z’ is restricted to
lie in the range 10 MeV — 200 MeV

* g’ central value is fixed as a function of
mZ’

Ay

L L

L a H

White Dwarfs

1072 !

IS (S T S S
My [GeV]

Experimental constraints on the U(l)Lu_L‘r gauge boson [arXiv:1803.05466v2]
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DM Parameter Space — Cosmological Constraints

Relevant Processes:
/
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M= 100 MeV

* Both contribute to relic abundance. Only process relevant
for CMB constraint is muon/anti-muon pair production

* Annihilation to a pair of Z;, only possible if DM is the
heavier of the two. Cosmological bounds on the dark matter coupling strength



Constraints Imposed by Direct Detection
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e Consider several experiments:
XENONI1T, DarkSide-50, CDMSlite,
CRESST-III, DarkSide-LM,
SuperCDMS

e Typically consider low Q limit of
loop level kinetic mixing (mixing
at tree level taken to be 0)

* We consider mixing at both tree
and loop level with full Q
dependence of Kioop(Q) along
with BC k0t = 0 as Q=0 :

Kloop(Q) = k1(Q,my,) — k1(Q,m,)

0+0(m?/Q%) ,
k1(Q,my) — k1(Q,my) = { g’ 1, ™2 + 0(Q?*/m?) ,
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Scaling Direct Detection Upper Bounds

Running kinetic mixing
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Constant kinetic mixing
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Running kinetic mixing is very
supressed in low Q region

Leads to a different event rate for
direct detection, suggesting we
may modify the constraints found
for constant kinetic mixing

We scale the constant mixing
bounds by | &,
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* Constant kinetic mixing limits DM mass range to~ < 2(1) GeV for

ReSU|ting DM mZ’ = 100(20) MeV
Parameter Space

Considering running kinetic mixing loosens up the parameter space
(upper bound on DM mass increased to~ 6 GeV)

mz = 100 MeV mz = 100 MeV
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Parameter space of DM candidate X considering constant and total kinetic mixing



* An extension to the SM with the gauge
group U(l)Lu_LT can explain the observed g-

2 excess.

* Considering full momentum dependence of
kinetic mixing in this model leads to a viable

Future Work DM parameter space

Summary +

* Work in Progress: We expect a stronger
annual modulation effect due to increased '
rate contribution from higher recoil energies
(higher DM velocity) /
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Rate Integrand

my =5 GeV.mp = 100 MeV._
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