New Evidence for a Dark Sector? Search for the X17 Resonance

- The ATOMKI Anomalies in ⁸Be* and ⁴He*
- The X17 boson & theor. interpretations
- Ongoing & planned verifications
- The X17 project at U. of Montreal

A 7σ Evidence for a New 17 MeV Boson?

18.2 MeV

1+

A. J. Krasznahorkay et al.; Phys. Rev. Lett. 116 no. 4, (2016) 042501, arXiv:1504.01527 [nucl-ex].

۲

The ATOMKI Experiment!

- Excited states of ⁸Be produced through $p + {}^{7}Li$ reaction with high statistics
- Beam energy around 1 MeV adjusted to select various resonances
- γ 's are converted by IPC into e⁺e⁻ pairs
- Measure angular distribution of e⁺e⁻ pairs

ATOMKI @ Institute for Nuclear Research Debrecen, Hungary

⁸Be* - Decay and Internal Pair Creation (IPC)

⁸Be* - A Particle Physics Lab!

 $|Y| = |(E^+ - E^-)|/(E^+ + E^-) \ge 0.5$

A. J. Krasznahorkay et al.; Acta Physica Polonica B, Vol.50 (2019) A. J. Krasznahorkay et al.; *Phys. Rev. Lett.* **116** no. 4, (2016) 042501

The Anomaly!

- Excess around $\theta = 140^{\circ}$ passing through 18 MeV ⁸Be*resonance
- Probability for backg. fluctuation: 5.6 x 10⁻¹² (6.8σ)

•
$$\frac{\Gamma(\ ^8Be \rightarrow \ ^8Be X)}{\Gamma(\ ^8Be \rightarrow \ ^8Be \gamma)} = 5.6 \times 10^{-6}$$

Opening angle, asymmetry and invariant mass consistent with decay of new particle

 $M_x = 16.7 \pm 0.35$ (stat) ± 0.5 (sys) MeV

A. J. Krasznahorkay et al.; *Phys. Rev. Lett.* **116** no. 4, (2016) 042501

The ATOMKI ⁸Be* / ⁴He* - Experiments

Sanity Checks:

- Signal rises and falls when scanning through the resonance (Be*)
- Excess of symmetric e^+e^- pairs \rightarrow suggests massive particle
- Opening angles and invariant masses in ⁸Be* and ⁴He* agree
- Up to now no convincing SM explanation!
- Cannot be stat. fluctuation....maybe uncontrolled systematic errors?
- Couple of anomalies or puzzles could be solved with new BSM particles Dark matter, (g – 2)_µ, p- charge radius, QCD axions....

Independent exp. verification needed!but what particle could it be?

....what Particle could it be?

Be* 18.15 MeV state: $1^+ \rightarrow 0^+$

 \rightarrow X can be pseudoscalar (L=1)!

 \rightarrow X can be vector (L=1)!

 \rightarrow X can be axial vector in (L=0, 2)!

He* 20.2/21.0 MeV states: $0^+/0^- \rightarrow 0^+$

 \rightarrow X can be pseudoscalar (L=0)!

 \rightarrow X can be vector in (L=1)!

 \rightarrow X can be axial vector

X17 with $J^{\pi} = 1^{-/+}$ or 0^{-} could fit the bill!

Maybe a Dark Photon A' $(J^{\pi} = 1^{-})$?

- Interaction with ord. matter mediated by "dark " A'
- Gauge boson A' mixes kinetically with γ and $\epsilon \sim 10^{-3}$
- A' couples to SM particles prop. to ε and SM charges
- Vector mediator decays to low mass WIMPs

But

But...Parameter Space for Dark Photons limited

J. L. Feng, et al, Phys. arXiv:2006.01151 [hep-ph].

...but bounds, especially $\pi^0 \rightarrow \gamma(X)$ (NA48/2) can be fine – tuned away!

But...Parameter Space for Dark Photons limited

J. L. Feng, et al, Phys. arXiv:2006.01151 [hep-ph].

...but bounds, especially $\pi^0 \rightarrow \gamma(X)$ (NA48/2) can be fine – tuned away!

Model Building, Implications for DM Searches, etc

σ^{SI} [10⁻⁴⁵ cm²]

One of many other examples...

- Gauged U(1) $_{B-1}$ symm. with Z₂ parity
- 17 MeV X- gauge vector boson (⁸Be*) •
- Radiative see-saw for RH- $\nu's$ with $m_{\nu} \neq 0$ •
- RH ν masses ~ GeV
- RH $\nu's$ are DM w. relic abundance ok

...or an axial vector? arXiv:1612.01525v2

...or a QCD axion?

... or a protophobic Z'?

J. Kozaczuk, D.E. Morrissey, S. R. Stroberg

D. Alves arXiv:200905578 J. Liu et al.; arXiv: 2102.1011

C. Hati et al. arXiv: 2005.00028 L. Delle Rose et al. arXiv: 1708.0886

O. Seto, T. Shimonura CRESST II arXiv:1610.08112 106 **CDMSlite** LUX DAMIC 1 kg SuperCDMS SNO PICO $C_2H_2F_4$ 1 LAr SBC 50 kgd 100eV 2 10 8 mNR [GeV] SI - X-sections in reach of NEWS-G, PICO (H), DAMIC et al.

Where Else Can We look?

Dark photon searches @ accelerators and beam dumps

Belle II: $D^{+*} \rightarrow D^{+} + e^{+}e^{-}$; statistics! >2025 (\rightarrow Miho Wakai's talk) LHCb: ; $D^{0*} \rightarrow D^{0} + e^{+}e^{-}$ after upgrade 2025 MAGIX@ MESA, Mainz - operates > 2024/25 LDMX@JLAB/SPS? - operates > 2024, statistics! NA64 @CERN/SPS – needs detector upgrade, statistics! PADME@Frascati - to reach sensitivity needs modif. Darklight @ Ariel, TRIUMF 45 GeV e⁻ approved; > 2023;

Window of opportunity for fast moving new intitatives !

Where Else Can We look? Other nuclei!

-	N_*	$J_*^{P_*}$	T_*	$\Gamma_{N_{\star}}$ (keV)		_
7	⁸ Be(18.15)	1+	0	M1 IV	138	
$Li(p, \gamma)$ Be	⁸ Be(17.64)	1+	1	M1 IS	10.7	
$^{11}B(p,\gamma)^{12}C$	$^{12}C(17.23)$	1-	1	E1 IV	1150	
	$^{4}\text{He}(21.01)$	0-	0	M0	840	
$^{3}H(p,\gamma)$ ^{4}He	${}^{4}\text{He}(20.21)$	0+	0	E0	500	
,	¹⁰ B(19.3)	2- (-3+)	1	E1	280	
7 . 2 10	$^{10}B(18.1)$	2+ (-1+)	1	M1	< 600	
$^{\prime}Li(^{\circ}He,\gamma)^{10}B$	$^{10}B(18.4)$	2- (-3+)	1	E1	280	
	$^{10}B(17.0)$	1- (-2+)	1	E1	280	

Motivation for an X17 Project @ Montreal Van de Graaff facility!

³He – beams available 😳

X17 – Consistency Checks

X17 – Parameter Space to Explore in Nuclei

Transition	Vector	Axial vector	Scalar	Pseudo scalar	Isospin
⁸ Be: 1 ⁺ 0 ⁺ M1-IS	L=1	L=0,2		L=1	ΔT=0
⁸ Be: 1 ⁺ 0 ⁺ M1-IV	L=1	L=0,2		L=1	ΔT=1
¹² C: 1 ⁻ 0 ⁺ E1-IV	L=0,2	L=1	L=1		ΔT=1
¹⁰ B: 2 ⁻ 3 ⁺ E1-IV	L=0,2	L=1	L=1		ΔT=1
¹⁰ B: 2 ⁺ 1 ⁺ M1-IV	L=1	L=0,2		L=1	ΔT=1
¹⁰ B: 2 ⁻ 3 ⁺ E1-IV	L=0	L=1	L=1		ΔT=1
⁴ He: 0 ⁻ 0 ⁺ M0		L=1		L=0	ΔT=1
⁴ He: 0 ⁺ 0 ⁺ E0	L=1		L=0		ΔT=0

X17 – Parameter Space to Explore

If X17 produced in direct E1capture (⁴He,¹⁰B..)

Angular distribution of the e⁺e⁻ pair depends on the X17 quantum numbers

Large angular acceptance allows discrimination btw. different options

> More motivation for an X17 Project @ the Montreal Van de Graaff facilility

Some Puzzles...and/or Inconsistencies?

EPJ Web of Conferences 142, 01019 (2017)

What is going on at the Be^{*} 17.6 MeV M1 IV transition?

- not seen in 2016 pub. observed in 2017- no more > 2017?
- kinematically suppressed? (Feng et al.)
- evidence for AV boson? J. Kozaczuk, D.E. Morrissey, S. R. Stroberg / arXiv:1612.01525v2

What is going on at the Be* 18.2 MeV M1 IS transition?

- if protophobic then X produced off-res. in E1 direct capture (X. Zhang, Miller; arXiv:1703.04588)
- in conflict with exp. evidence for res. production!

What is going on at the overlapping He* 0⁺0⁻ resonances?

- no change in X rate by scanning through the 2 resonances
- then X produced via E1 in direct capture! (M. Viviani et al.; arXiv:2104.07808)
- then why not also in Be*?

Independent nucl. physics verification needed!

The Montreal X-17 Project

G. Azuelos¹, D. Bryman², W.C. Chen¹, L. Doria³, M. Laurin¹, K. Leach⁴, H. de Luz⁵, J.P. Martin¹, A. Robinson¹, N. Starinski¹, R. Sykora⁵, U Wichoski⁶, V. Zacek¹,

¹U. Montreal, ²UBC, ³U. Mainz, ⁴C.S. Mines, ⁵CTU Prague, ⁶Laurentian U.

Main goals:

- Verification of ATOMKI results
- Start with existing equipment
- Increase acceptance \rightarrow 0.95 x 4 π
- Improve statistics & angular resolution
- Eventually extend to other nuclei: ¹⁰B , ¹²C, ⁴He

The Montreal X-17 Project

UdeM 6 MV Tandem Van de Graaff Facility

- E resolution of 2kev for $E_p = 0.4 - 1 \text{ MeV}$
- Dedicated Beam Line for X17 – project

³He – beam available!

The Montreal X-17 Project

- Use parts of the DAPHNE experiment (Saclay/Mainz*)
- Tracking MWPC chamber & 16 scintillators (NE102A)
- Scints & MWPC from U. Mainz \rightarrow now @ Montreal

*Many thanks to L. Doria, U. Mainz

The DAPHNE Tracking Chamber

- ID 12 cm / OD 14 cm Length 36 cm
- Cathode-anode distance: 4 mm;
- 192 Anode wires: 20 µm diam; spacing: 2mm
- 60/68 cathode strips at 45^o w.r. to wires; width 4mm
- Gas mixture: « magic gas »*

- Angular res.: $\Delta \theta \sim 2^0$ (FWHM)
- Low density material to avoid EPC!

* 74.5% Ar, 25% Ethane, 0.5% Freon

Status Set-UP

- MWPC: first wires tested with preamps & complete R/0
- 332 channels total → VF48 digitizers (TRIUMF)
- FPGA firmware ready
- Max. R/O speed: 40 kHz
- Add ΔE –scint. layer
- Add Cosmics veto

Test – Beam Measurements

Test – Beam Measurements

Test – Beam Measurements

31

On - going:

- Testing of DAPHNE MWPC (cosmics + beam)
- Deploy full MWPC read-out
- Be* e+ e- coincidences w. MWPC
- Next: deploy the 16 DAPHNE scintillators

Geant4 Sim.: Acceptances

G. Azuelos, J. Pothier-Leboef (U. Montreal) K. Leach, I. Bisset (Colorado School of Mines)

Simulation – ⁸Be* (IPC & X17)

Full detector geometry:

- M1- IPC: E_v = 18.15 MeV
- $\Delta \theta \sim 2^0$ (FWHM); $\Delta E / E \sim 7.4\% / \sqrt{E}$
- |y| < 0.45; m(ee) > 12 MeV/c²

•
$$B(X/IPC) = \frac{B(X/\gamma)}{B(IPC/\gamma)} = \frac{5.8 \times 10^{-6}}{3.9 \times 10^{-3}} = 1.5 \times 10^{-3}$$

• Signal/Background in region of interest:

 $S/B \approx 0.6$

 $(135^0 \le \theta \le 180^0)$

•later optimization w. neural net analysis

Signal Rates: ⁸Be* IPC / X17

34

The Montreal X-17 Project - Strategy

....but we are not alone!

Other Ongoing Efforts: New JEDI

GANIL (F); IJCLab (F), IAP (F); Minnessota U. (US); NPI(CZ); ULB (B); INFN LNS (I); Ithemba Labs (SA)

Offline characterisation using ²⁰⁷Bi source

Fall 2021 \rightarrow '23: Series of experiments @ IJCLab (Be), GANIL (He) and Ithemba (Be)

Other Ongoing Efforts: NuCReX17

MEGII @ PSI: Cockcroft Walton (1 MeV) + very well suited apparatus (accurate tracking and 4-momenta measurement

⁷Li(p,X17)⁸Be → e⁺e⁻ Measurement:

End of 2021/2022 (scheduled)

- n_ToF @ CERN: pulsed neutron beam in a wide energy range (thermal<E_n<100 MeV).</p>
- Time of flight to establish the single neutron energy (10-10⁸ eV)
- dedicated detector

³He(n,X17)⁴He (new!) e⁺e⁻

Measurement: 2022 (CERN LoI)

LUNA-MV @ LNGS: high intensity proton beam and low bacground

- ★ Terminal Voltage ≈ 0.2 3.5 MV
- I max ≈ 100 μA of protons
- Underground operation
- dedicated detector

³H(p,X17)⁴He

Measurement: 2022 (Lol in preparation)

e⁺e⁻

LUNA / n_ToF : UNITO, INFN LNL, INFN ROMA, ENEA, UNIBOLOGNA, INFN BARI, INFN LNS, ENEA ROMA, CNR BARI MEG: INFN ROMA

Theory:UNIPISA, INFN PISA, INFN PISA, UNISALENTO

Detector R&D: ISS, INFN PISA

Conclusions

- Intriguing results by the ATOMKI collaboration in Be*and He*
- UdeM experiment for independent & timely verification
- Extend to other states & nuclei: ¹⁰B(17.8), ¹⁰B(19.3), ⁴He (22 MeV)
- Large solid angle increases coverage of param. space (V, AV P, PS)
- Other searches: New JEDI, NuCReX17, Darklight, Na64, SHiP, SeaQuest, LHCb, PADME...

Collaborators welcome !

