of Physicists

Canadian Association

Association canadienne

des physiciens et physiciennes

Contribution ID: 210

Type: Oral (Non-Student) / Orale (non-étudiant(e))

Ab-initio calculations of structure factors for dark matter searches

Wednesday 9 June 2021 17:10 (10 minutes)

We present the first ab-initio calculations of the structure factors for elastic spin-dependent WIMP scattering off ¹⁹F, ²⁷Al, ²³Na, ²⁷Al, ²⁹Si, ⁷³Ge, ¹²⁷I and ^{129,131}Xe. A set of established two- (NN) and three-nucleon (3N) interactions derived from chiral effective field theory (EFT) are used for nuclear interaction, including N³LO-level NN + N²LO-level 3N, N⁴LO-level NN + N²LO-level 3N, and N²LO-level NN+3N with the (1232)-isobar degrees of freedom. Within the same chiral EFT framework, we employ corresponding WIMP-nucleus currents at the one-body level and also include the effects from axial-vector two-body currents. We then apply the ab-initio in-medium similarity renormalization group to construct valence-space Hamiltonians and consistently transformed operators of nuclear responses. By combining the newly developed frameworks, natural orbitals and expressing the 3N force with a very large basis size, we obtain basis-space converged structure factors in heavy nuclei. This work paves the path toward a true first-principles calculation of the structure factor for WIMP scattering in all nuclei relevant for ongoing searches. All results are publicly available in a Jupyter notebook.

Author: Dr HU, Baishan (TRIUMF)

Co-authors: Prof. HOLT, Jason (TRIUMF and McGill University); Dr MIYAGI, Takayuki (TRIMUF); Mr PADUA, José (TRIUMF); Dr STROBERG, Ragnar (University of Washington)

Presenter: Dr HU, Baishan (TRIUMF)

Session Classification: W4-5 Theory I (DNP) / Théorie I (DPN)

Track Classification: Nuclear Physics / Physique nucléaire (DNP-DPN)