Machine Learning and Multiclassifiers for Improved Measurements of 2-Lepton Final States in the Higgs to WW Decay Channel in High Energy Physics Analyses

Virtual CAP Congress 2020 Particle Physics Session – June 9, 2020 Matthew Basso¹ (University of Toronto) With help from lots of people!

1 - mbasso@physics.utoronto.ca

Canadian Association of Physicists

Association canadienne des physiciens et physiciens

2020/06/09

Matthew Basso (Toronto)

2

Overview

- Introduction:
 - Physics problem: measuring (V->qq)(H->WW->lvlv)
 - Rare process with large background contributions
- Machine learning:
 - Motivation with a discussion of neural networks in particular
 - Training and implementation: Keras+TensorFlow in Python
- <u>Results</u>:
 - Performance and validation
 - Binning optimization and regularization algorithm for statistical significance

Introduction and Multiclassifier Development

Introduction

- Discovery of scalar consistent with Higgs boson in 2012 by ATLAS and CMS at the LHC was a critical test of the Standard Model (SM) [1,2]
 - Important to verify the SM in individual decay channels, e.g., H->ZZ, H->WW, H >yy, etc. deviations would point to Beyond the SM (BSM) physics
- Here, we consider *H*->*WW*->*lvlv*
 - *H*->*WW* 2nd highest branching fraction at $\sqrt{s} = 13$ TeV (after *H*->*bb*)
 - Can't reconstruct Higgs mass due to missing transverse energy (MET) carried away by neutrinos
 - Observed (using threshold in *p*-value of 5σ) using a combination of the gluongluon fusion (ggF), vector boson fusion (VBF), and associated (VH) production channels in ATLAS Run 1 [3] and ggF+VBF in ATLAS Early Run 2 [4]

Introduction (2)

- Measurements of V(H->WW) (abbr. VH) have been made independently of ggF+VBF HWW for Run 1 [5] and Early Run 2 [6]
 - Never reached 5 σ "observation" may be possible with 139 ifb of data from LHC Full Run 2
- Consider 2-lepton VH channel: V(->qq)H(->lvlv)
 - Looking for 2 different-flavour, opposite-sign (DFOS) leptons + MET and 2 jets
 - Small signal (cross section ~100, ~10 times smaller than ggF, VBF) with large backgrounds:
 - <u>Top</u>: top-antitop quark pair production (ttbar), single top production (*Wt*)
 - <u>Drell-Yan or Z+jets</u>: Z-> π in association with jets where the taus decay to DFOS leptons
 - <u>Diboson WW</u>: irreducible background matching signal decay
 - Analyzed in Run 1 using a cut-based analysis in 1 signal bin [5] **can we use machine learning to perform a better measurement (using Run 1 cuts as the baseline)?**

Relevant Feynman Diagrams

Higgs production modes considered. Obtained from Fig. 1 of Ref. [3].

Direction/spin of particles in HWW decay. Obtained from Fig. 3 of Ref. [3].

DFOS VH channel. Obtained from Fig. 1 of Ref. [5].

Machine Learning and Neural Nets

- Multivariate analysis (MVA) techniques such as machine learning (ML) have seen widespread use in high-energy physics
 - ML: attempts optimize a set of free parameters ("training") to best map inputs to desired outputs (i.e., supervised learning)
 - Exploits correlations between input variables in ways (rectangular) cut-based analyses cannot
- <u>Neural nets (NNs)</u>: map input vectors to output vectors via a series linear matrix operations ("layers") with (possibly) nonlinear functions applied to the output of each ("activations")
 - $\mathbf{x'} = f(\mathbf{A}.\mathbf{x} + \mathbf{b})$ for a single layer, where f(...) is applied element-by-element
 - Free parameters: choice of f(...), kernel (matrix) **A**, bias (vector) **b**

Multiclassifiers and Samples

- For N output classes, get N output discriminants describing the probability of an event belonging to each class (Σ outputs = 1)
- Balance to be struck between too many classes and too few
 - <u>Signal-like</u>: *V(qq)H(lvlv)*, ggF(*lvlv*), VBF(*lvlv*)
 - <u>Background-like</u>: top (ttbar + *Wt*), Z+jets, *WW*
 - Exclude subleading backgrounds: other VV, W+jets ("fakes"), ...
- Use ATLAS Run 2 (2015-18) Monte Carlo (MC) samples for the processes of interest as well as Run 2 data for validation (work-in-progress!)

Input Variable Definitions

- Cap
- Choice of inputs is important! based partly on DFOS VH Run 1 cuts [5] and Early Run 2 VBF MVA variables [4]
 - Lepton variables:
 - Leading/subleading lepton p_T 's, dilepton angular separation $\Delta \phi_{\parallel}$, rapidity difference ΔY_{\parallel} , and mass M_{\parallel}
 - J<u>et/MET variables</u>:
 - Leading/subleading jet p_T 's, dijet angular separation $\Delta \varphi_{ij}$, rapidity difference ΔY_{ij} , and mass M_{ij} ($|M_{ij} 85 \text{ GeV}|$)
 - Tau-tau mass using collinear approximation M_{π} ($|M_{\pi} M_{Z}|$, M_{Z} = mass of Z boson) [7]
 - Transverse mass $M_{T} = \sqrt{((E_{T}'' + E_{T}^{miss})^2 |\mathbf{p}_{T}'' + \mathbf{E}_{T}^{miss}|^2)}$
 - Track-based MET E_Tmiss,track
 - Sum of all p_{T} -hard objects + soft (track+calorimeter) contributions H_{T}^{soft} [8]
 - MET-based significance $E_{T^{miss}} / \sigma(E_{T^{miss}})$ [8]
 - Sum of lepton/jet p_T 's + track-based MET $\Sigma p_T^{\text{total,track}}$ and all lepton-jet mass combinations ΣM_{ij}

17 in total – could maybe be reduced by removing highly-correlated variables

Preprocessing and Training

- Apply preselection (2 DFOS leptons with min p_T , M_{\parallel} cuts), $N_{\text{jets}} \ge 2$, and $N_{\text{b-jets}} = 0$ (to reject top) to our samples
 - <u>Raw yields</u>: 127K VH, 115K ggF, 390K VBF, 2.00M top, 998K Z+jets, 1.59M WW
- Preprocessing performed with the help of scikit-learn [9]
 - Median is subtracted from input variables and scaled to interquartile range (robust scaling)
 - Sum of weights/class is scaled to 1 (to account for differing raw yields)
 - Gaussian noise applied to inputs and throughout network to minimize overtraining
- Use Keras [10] with the TensorFlow [11] backend for training
 - Hyperparameters (# of nodes/layer, learning rate, activation function) optimized using Ray
 [12] + Tune [13] with space defined using Hyperopt [14] (see Backup)
 - Final training is performed using 80-20% train-test splitting with 5-way K-folding (see Backup)

Example Shape Distributions

All input shape distributions included in Backup!

2020/06/09

 ΔY_{jj} is **good discriminator** for VH and VBF

 $\Delta \varphi_{\parallel}$ is a **good discriminator** for Higgs signal vs. background

VH + stat ATLAS WorkggF + stat VBF + stat In-Progless Ziets + stat .2 top + stat WW + stat .0 Weigh 80'0 0.06 0.04 0.02 0.00 -1.00-0.75 -0.50 -0.250.00 0.50 0.75 0.25

DPhill

- <u>Shapes</u>:
 - *x*-axis is median scaled (*unitless*)
 - Sum of weights per class is normalized to 1 (to show shapes)

Optimized Network Structure

- <u>Optimization metric</u>: validation receiver-operator characteristic (ROC) curve area (AUC)

 plots signal efficiency vs. background rejection (ideally AUC ~ 1)
- Network yielding highest ROC AUC (~0.87):
 - # of nodes/layer (10 in total) = 20, 20, 40, 70, 20, 50, 40, 30, 40, 30
 - Activation function = exponential linear unit (ELU)
 - Learning rate (i.e., gradient descent step size) = 0.00222
- Other (*static*) network parameters/features:
 - Batch size = 1024 and optimizer Adam
 - Categorical crossentropy loss function (typical for multiclassifiers)
 - Softmax output activation (typical for multiclassifiers, ensures Σ outputs = 1)
 - Batch normalization at the output of each layer (to guard against large output values at specific nodes), early stopping during training (to guard against overtraining)

ATLAS workin-progress

Multiclassifier Training/Validation Metrics and Performance

Data-MC Comparisons @ Level of Inputs

- See all plots in the Backup
 - Include additional processes: ZZ, WZ, V+y, W+jets, ...
- Generally OK (0.9-0.95) data/MC agreement
 - Disagreement is not completely understood, but it's also not a showstopper
 - We know we have imperfect Z+jets modelling
 - Potentially fixed by applying a normalization factor derived in a Z+jets control region (e.g., see Run 1 [5])
 - Not applied here

 Δy_{ii}

Matthew Basso (Toronto)

Correlation Matrix: Difference (MC – data)

ptTot

- NNs rely on *correlations* between input variables:
 - Expect NN to perform well on data if correlations are well modelled in MC
 - Element-by-element difference in correlation matrices doesn't exceed ±0.08 – modelling seems satisfactory
 - MC correlation matrix included in Backup

ATLAS Work-In-Progress Multi2 NN : correlation matrix : (MC - data)

	pt_io	pr_ir	Denni			pr jo	pro-	Dring	51,0		inte		HACKMET	maon	mersig p	TOLATTACKI	ET Summing	
pt_10 -	1.0 1.0 0.0	0.57999 0.53617 -0.044	0.10124 0.05139 -0.05	0.01169 -0.00104 -0.013	0.63768 0.59913 -0.039	0.39336 0.42483 0.031	0.20292 0.20731 0.004	-0.11515 -0.123 -0.008	-0.03775 -0.06202 -0.024	0.10207 0.08736 -0.015	0.0109 0.00045 -0.01	0.66734 0.65716 -0.01	0.55001 0.60739 0.057	0.03041 0.01139 -0.019	0.14506 0.15777 0.013	0.37705 0.41769 0.041	0.48646 0.51072 0.024	- 0.08
pt_11 -	0.57999 0.53617 -0.044	1.0 1.0 0.0	0.18756 0.1213 -0.066	0.00908 0.00429 -0.005	0.71665 0.69301 -0.024	0.1948 0.21911 0.024	0.10665 0.11667 0.01	-0.04898 -0.0585 -0.01	-0.01706 -0.0354 -0.018	0.055 0.04675 -0.008	0.00558 0.00072 -0.005	0.6459 0.60744 -0.038	0.22419 0.25722 0.033	0.02783 0.01059 -0.017	0.05251 0.06151 0.009	0.18395 0.21747 0.034	0.37992 0.39809 0.018	
DPhill -	0.10124 0.05139 -0.05	0.18756 0.1213 -0.066	1.0 1.0 0.0	-0.00407 0.04006 0.044	0.3847 0.39792 0.013	-0.18285 -0.21188 -0.029	-0.09534 -0.09322 0.002	0.14053 0.17252 0.032	0.04706 -0.0195 -0.067		0.01733 0.00353 -0.014	0.27756 0.28947 0.012	-0.21087 -0.17579 0.035	0.00886 0.00447 -0.004	-0.05528 -0.05486 0.0	-0.17565 -0.22126 -0.046	-0.00659 -0.09215 -0.086	- 0.06
DYII -	0.01169 -0.00104 -0.013	0.00908 0.00429 -0.005	-0.00407 0.04006 0.044	1.0 1.0 0.0	0.48597 0.46596 -0.02	-0.01878 -0.04091 -0.022	0.008 0.00096 -0.007	0.00772 0.03431 0.027	0.053 -0.00341 -0.056	0.03662 -0.02668 -0.063	0.00185 0.00124 -0.001	0.42255 0.38681 -0.036	0.03879 0.01335 -0.025	0.01123 0.0062 -0.005	0.02465 0.02099 -0.004	-0.01444 -0.04754 -0.033	0.12933 0.06091 -0.068	
MII -	0.63768 0.59913 -0.039	0.71665 0.69301 -0.024	0.3847 0.39792 0.013	0.48597 0.46596 -0.02	1.0 1.0 0.0	0.12796 0.11679 -0.011	0.08102 0.08081 -0.0	-0.01757 -0.0017 0.016	0.02222 -0.04009 -0.062	0.06631 -0.00166 -0.068	0.01095 0.00178 -0.009	0.9 0.87378 -0.026	0.23156 0.24223 0.011	0.03135 0.01335 -0.018	0.06978 0.07336 0.004	0.11953 0.1034 -0.016	0.4033 0.35188 -0.051	- 0.04
pt_j0 -	0.39336 0.42483 0.031	0.1948 0.21911 0.024	-0.18285 -0.21188 -0.029	-0.01878 -0.04091 -0.022	0.12796 0.11679 -0.011	1.0 1.0 0.0	0.65293 0.66211 0.009	0.12075 0.11736 -0.003	+0.09078 +0.08108 0.01	0.3495 0.35562 0.006	-0.00078 5e=05 0.001	0.15228 0.1463 -0.006	0.3846 0.44381 0.059	0.02166 0.00668 -0.015	0.24868 0.27776 0.029	0.65907 0.69778 0.039	0.44456 0.50353 0.059	
pt_j1 -	0.20292 0.20731 0.004	0.10665 0.11667 0.01	-0.09534 -0.09322 0.002	0.008 0.00096 -0.007	0.08102 0.08081 -0.0	0.65293 0.66211 0.009	1.0 1.0 0.0	0.18205 0.18207 0.0	+0.10238 +0.08491 0.017	0.35107 0.37225 0.021	-0.00059 -0.00012 0.0	0.09712 0.10173 0.005	0.26612 0.30307 0.037	0.01649 0.00587 -0.011	0.092 0.10277 0.011	0.3597 0.36814 0.008	0.32268 0.37292 0.05	- 0.02
DPhijj -	-0.11515 -0.123 -0.008	-0.04898 -0.0585 -0.01	0.14053 0.17252 0.032	0.00772 0.03431 0.027	-0.01757 -0.0017 0.016	0.12075 0.11736 -0.003	0.18205 0.18207 0.0	1.0 1.0 0.0	0.00699 0.01829 0.011	0.14669 0.13433 -0.012	-0.00802 0.00012 0.008	-0.02405 -0.00622 0.018	-0.02118 -0.0216 -0.0	0.00032 -0.00013 -0.0	-0.16156 -0.17276 -0.011	-0.24359 -0.21291 0.031	-0.03029 -0.02557 0.005	
DYjj -	-0.03775 -0.06202 -0.024	-0.01706 -0.0354 -0.018	0.04706 -0.0195 -0.067	0.053 -0.00341 -0.056	0.02222 -0.04009 -0.062	-0.09078 -0.08108 0.01	-0.10238 -0.08491 0.017	0.00699 0.01829 0.011	1.0 1.0 0.0	0.71562 0.70438 -0.011	0.00235 -3e+05 -0.002	0.01937 -0.03706 -0.056	-0.00756 0.00706 0.015	-8e-05 -0.00078 -0.001	-0.11104 -0.13227 -0.021	0.01741 0.02363 0.006	0.34048 0.32968 -0.011	- 0.00
Mjj -	0.10207 0.08736 -0.015	0.055 0.04675 -0.008	-0.02419 -0.10886 -0.085	0.03662 -0.02668 -0.063	0.06631 -0.00166 -0.068	0.3495 0.35562 0.006	0.35107 0.37225 0.021	0.14669 0.13433 -0.012	0.71562 0.70438 -0.011	1.0 1.0 0.0	0.00064 •9e•05 •0.001	0.0751 0.01277 -0.062	0.16317 0.20511 0.042	0.00716 0.00191 -0.005	-0.02911 -0.03253 -0.003	0.26761 0.28969 0.022	0.53709 0.5524 0.015	
mtt -	0.0109 0.00045 -0.01	0.00558 0.00072 -0.005	0.01733 0.00353 -0.014	0.00185 0.00124 -0.001	0.01095 0.00178 -0.009	-0.00078 5e-05 0.001	-0.00059 -0.00012 0.0	-0.00802 0.00012 0.008	0.00235 -3e-05 -0.002	0.00064 -9e-05 -0.001	1.0 1.0 0.0	0.0133 0.00171 -0.012	0.00715 -6e-05 -0.007	0.00044 1e:05 -0.0	0.01119 0.00089 -0.01	0.00232 0.00011 -0.002	0.00189 2e-05 -0.002	0.02
мт -	0.66734 0.65716 -0.01	0.6459 0.60744 -0.038	0.27756 0.28947 0.012	0.42255 0.38681 -0.036	0.9 0.87378 -0.026	0.15228 0.1463 -0.006	0.09712 0.10173 0.005	-0.02405 -0.00622 0.018	0.01937 -0.03706 -0.056	0.0751 0.01277 -0.062	0.0133 0.00171 -0.012	1.0 1.0 0.0	0.45542 0.48402 0.029	0.03044 0.01247 -0.018	0.35363 0.35537 0.002	0.14709 0.13479 -0.012	0.38007 0.3389 -0.041	
TrackMET -	0.55001 0.60739 0.057	0.22419 0.25722 0.033	-0.21087 -0.17579 0.035	0.03879 0.01335 -0.025	0.23156 0.24223 0.011	0.3846 0.44381 0.059	0.26612 0.30307 0.037	-0.02118 -0.0216 -0.0	-0.00756 0.00706 0.015	0.16317 0.20511 0.042	0.00715 -6e-05 -0.007	0.45542 0.48402 0.029	1.0 1.0 0.0	0.01813 0.00664 -0.011	0.37507 0.34557 -0.03	0.41102 0.48951 0.078	0.32587 0.4067 0.081	0.04
HTSoft -	0.03041 0.01139 -0.019	0.02783 0.01059 -0.017	0.00886 0.00447 -0.004	0.01123 0.0062 -0.005	0.03135 0.01335 -0.018	0.02166 0.00668 -0.015	0.01649 0.00587 -0.011	0.00032 -0.00013 -0.0	-8e-05 -0.00078 -0.001	0.00716 0.00191 -0.005	0.00044 1e-05 -0.0	0.03044 0.01247 -0.018	0.01813 0.00664 -0.011	1.0 1.0 0.0	0.00646 0.00184 -0.005	0.02149 0.00637 -0.015	0.0172 0.00791 -0.009	
METSig -	0.14506 0.15777 0.013	0.05251 0.06151 0.009	-0.05528 -0.05486 0.0	0.02465 0.02099 -0.004	0.06978 0.07336 0.004	0.24868 0.27776 0.029	0.092 0.10277 0.011	-0.16156 -0.17276 -0.011	-0.11104 -0.13227 -0.021	-0.02911 -0.03253 -0.003	0.01119 0.00089 -0.01	0.35363 0.35537 0.002	0.37507 0.34557 -0.03	0.00646 0.00184 -0.005	1.0 1.0 0.0	0.21351 0.24889 0.035	0.00279 0.03826 0.035	0.06
alTrackMET-	0.37705 0.41769 0.041	0.18395 0.21747 0.034	-0.17565 -0.22126 -0.046	-0.01444 -0.04754 -0.033	0.11953 0.1034 -0.016	0.65907 0.69778 0.039	0.3597 0.36814 0.008	-0.24359 -0.21291 0.031	0.01741 0.02363 0.006	0.26761 0.28969 0.022	0.00232 0.00011 -0.002	0.14709 0.13479 -0.012	0.41102 0.48951 0.078	0.02149 0.00637 -0.015	0.21351 0.24889 0.035	1.0 1.0 0.0	0.43676 0.48417 0.047	
SumMlj -	0.48646 0.51072 0.024	0.37992 0.39809 0.018	-0.00659 -0.09215 -0.086	0.12933 0.06091 -0.068	0.4033 0.35188 -0.051	0.44456 0.50353 0.059	0.32268 0.37292 0.05	-0.03029 -0.02557 0.005	0.34048 0.32968 -0.011	0.53709 0.5524 0.015	0.00189 2e-05 -0.002	0.38007 0.3389 -0.041	0.32587 0.4067 0.081	0.0172 0.00791 -0.009	0.00279 0.03826 0.035	0.43676 0.48417 0.047	1.0 1.0 0.0	0.08

2020/06/09

VH Discriminant Performance

Validation metrics and performance plots for all outputs in Backup

Good ROC AUC

ROC calculation only considers signal to be VH (different from optimization definition)

Good training (training+validation) **and testing agreement** on linear and log scales (here, we show weighted average in output over all 5 NNs)

Optimizing Discriminant Binning

- Ultimately, we want to fit our MVA in our VH discriminant
 - Total significance of discovery ~ sum in quadrature of bin-by-bin significances
- We want to maximize total significance of discovery for our binning, use asymptotic formula (assuming Asimov data) [16] it can be shown (assuming Poisson counting in signal region with Gaussian auxiliary measurement on background) that the significance of discovery goes as:

$$Z_{0} = \sqrt{2 \cdot \left((s+b) \cdot \ln\left(\frac{s+b}{\hat{b}}\right) + \hat{b} - s - b + \frac{(b-\hat{b})^{2}}{2\sigma^{2}} \right)}, \quad \hat{b} = \frac{1}{2} \cdot \left(b - \sigma^{2} + \sqrt{(b-\sigma^{2})^{2} + 4 \cdot (s+b) \cdot \sigma^{2}} \right)$$

- In the above, s := MC signal, b := MC background, and $\sigma = 10\%$ as a (very!) rough estimation of background uncertainty (to penalize background in a bin)
 - Statistics-only fit might also be a practical solution

Optimizing Discriminant Binning (2)

- Consider binning our VH discriminant in [0.2, 1.0]
 - Doesn't need to be strictly bounded by 0.2, but [0.0, 0.2] is overwhelmingly background
- Progressively cut the range into 2 parts: if Z₀ would decrease, don't apply the cut; if Z₀ would increase, apply the cut
 - We don't keep a bin if it doesn't **pass regularization**: N_{VH} , $N_{bkg} > 3$ for each bin
 - Protect against upward fluctuations in data from 0
 - Additional optimization: split each bin 5%-95%, 10-90%, 15-85%, ..., 90%-10%, 95%-5% and pick the splitting which increases Z_0 the most
- Also apply $|M_{jj} 85| < 15$ GeV, $\Delta Y_{jj} < 1.2$ (Run 1 orthogonality cuts with ggF+2jets analysis [5])

Optimized Binning

Optimized binning (rounded to reasonable sigfigs): [0.20, 0.39, 0.45, 0.50, 0.53, 0.57, 0.61, 0.64, 0.68, 0.73, 1.00] – Z₀ = 0.97 (ATLAS work-in-progress)

2020/06/09

Matthew Basso (Toronto)

For reference: network deployed in C++ environment using lwtnn [15]

Discussion

- Nominally, using Run 1 cuts (right) [5] on Run 2 MC (normalized to 139 ifb) using the same significance formula yields Z₀ = 0.29 (ATLAS work-in-progress)
 - Not an entirely fair comparison, Run 1 used a single bin – maybe more appropriate to bin in M_τ in e.g. [50, 125] GeV using the same optimization algorithm
 - In any case, **a considerable improvement** from what we started with!

2020/06/09

Summary

- Presented a (hopefully informative!) talk on the use of multiclassifiers for improved measurements of V(H->WW) in LHC physics analyses
 - Summarized training and validation nothing too suspect
 - Asimov significance of discovery Z₀ = 0.97 for the MVA over
 0.29 for the cut-based analysis (ATLAS work-in-progress)
 - Mostly care about V(qq)H(lvlv), but multiclassifier also performs well for ggF and very well for VBF in the 2 jet bin

Next Steps

- Defining control regions (CRs): possible to use other multiclassifier output discriminants to define CRs for constraining particular backgrounds
 - Careful thought is needed in order to make the signal bins and the CRs orthogonal
 - Alternatively, if non-MVA-discriminant cuts are used to define the CRs, we could *merge* classes like top and *WW*
 - Or even merge VH+ggF and use the Run 1 orthogonality cuts to separate the two
- Binning optimization with some theory systematics and a fit
 - e.g., 2-point theory systematics would be the most straightforward, e.g., parton shower uncertainty
- Simplified template cross-section (STXS) framework dictates VH hadronic be measured in $|M_{jj} 90| < 30$ GeV [17]
 - Eventually we will need to drop the M_{ij} input (unless we fit the entire VH discriminant distribution)

References

- [1] ATLAS Collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. **B716** (2012) 1, arXiv: 1207.7214 [hep-ex].
- [2] CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. **B716** (2012) 30, arXiv: 1207.7235 [hep-ex].
- [3] ATLAS Collaboration, Observation and measurement of Higgs boson decays to WW* with the with the ATLAS detector, Phys. Rev. **D92** (2015) 012006, arXiv: 1412.2641 [hep-ex].
- [4] ATLAS Collaboration, Measurements of gluon-gluon fusion and vector-boson fusion Higgs boson production cross-sections in the H->WW*->evµv decay channel in pp collisions at √s = 13 TeV with the ATLAS detector, Phys. Lett. B789 (2019) 508, arXiv: 1808.09054 [hep-ex].
- [5] ATLAS Collaboration, *Study of (W/Z)H production and Higgs boson couplings using H->WW* decays with the ATLAS detector*, J. High Energy Phys. **08** (2015) 137, arXiv: 1506.06641 [hep-ex].
- [6] ATLAS Collaboration, Measurement of the production cross section for a Higgs boson in association with a vector boson in the H->WW*->IvIv channel in pp collisions at √s = 13 TeV with the ATLAS detector, Phys. Lett. B798 (2019) 134949, arXiv: 1903.10052 [hep-ex].

References (2)

- [7] T. Plehn, D. Rainwater, and D. Zeppenfeld, A method for identifying $H \rightarrow \tau + \tau \rightarrow e \pm \mu \mp p_{\tau}^{miss}$ at the CERN LHC, Phys. Rev. **D61** (2000) 093005, arXiv: hep-ph/9911385 [hep-ph].
- [8] ATLAS Collaboration, *Object-based missing transverse momentum significance in the ATLAS detector*, ATLAS-CONF-2018-038, CERN (2018) https://cds.cern.ch/record/2630948.
- [9] F. Pedregosa *et al.*, *Scikit-learn: Machine Learning in Python*, J. Mach. Learn. Res. **12** (2011) 2825, arXiv: 1201.0490 [cs.LG].
- [10] F. Chollet et al., Keras, (2015) https://keras.io.
- [11] M. Abadi *et al.*, *TensorFlow: A System for Large-Scale Machine Learning*, Proc. 12th USENIX Conf. Operating Syst. Design Implementation (2016) 265.
- [12] P. Moritz *et al.*, *Ray: A Distributed Framework for Emerging AI Applications*, Proc. 13th USENIX Conf. Operating Syst. Design Implementation (2018) 561, arXiv: 1712.05889 [cs.DC].

References (3)

- [13] R. Liaw et al., Tune: A Research Platform for Distributed Model Selection and Training, (2018), arXiv: 1807.05118 [cs.LG].
- [14] J. Bergstra *et al.*, *Hyperopt: a Python library for model selection and hyperparameter optimization*, Comput. Sci. Disc. **8** (2015) 014008.
- [15] D. Guest *et al.*, *Lightweight Trained Neural Network*, Github (2019) https://github.com/lwtnn/lwtnn.
- [16] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Asymptotic formulae for likelihoodbased tests of new physics, Eur. Phys. J. C71 (2011) 1554, arXiv: 1007.1727 [physics.data-an].
- [17] M. Duehrssen-Debling, P. Francavilla, F. J. Tackmann, and K. Tackmann, Simplified template cross sections, LHCHXSWG-DRAFT-INT-2016-006, CERN (2016) https://cds.cern.ch/record/2138079.

Input Shape Distributions

Input Shape Distributions (2)

K-Folding Demonstration

Hyperparamter Space

- Hyperparameter space defined by:
 - Number of nodes/layer: 10 to 100 in steps of 10
 - Activation function: exponential linear unit (ELU), rectified ELU (RELU)
 - Learning rate: log-uniform sampling from 1e-7 to 1e-2
- CPU scheduling performed by Tune's asynchronous HyperBand scheduler with HyperOpt search algorithm

Data-MC Comparisons @ Level of Inputs

Data-MC Comparisons @ Level of Inputs (2)

2020/06/09

Matthew Basso (Toronto)

Correlation Matrix: MC Raw

ntTotalTr

- Matrix of correlation factors in MC at the level of inputs
 - Larger correlations (e.g., ~>±0.7) could be indicative of variables which contain overlapping information

ATLAS Work-In-Progress

Multi2 NN : correlation matrix : MC

	pt_10	pt_l1	DPhill	DYII	міі	pt_j0	pt_j1	DPhijj	DYjj	Mjj	mtt	МТ	TrackMET	HTSoft	METSig ptTotalTrackMETSumMlj				1
pt_10 -	1.0	0.53617	0.05139	-0.00104	0.59913	0.42483	0.20731	-0.123	-0.06202	0.08736	0.00045	0.65716	0.60739	0.01139	0.15777	0.41769	0.51072		
pt_11 -	0.53617	1.0	0.1213	0.00429	0.69301	0.21911	0.11667	-0.0585	-0.0354	0.04675	0.00072	0.60744	0.25722	0.01059	0.06151	0.21747	0.39809		
DPhill -	0.05139	0.1213	1.0	0.04006	0.39792	-0.21188	-0.09322	0.17252	-0.0195	-0.10886	0.00353	0.28947	-0.17579	0.00447	-0.05486	-0.22126	-0.09215		- 0
DYII -	-0.00104	0.00429	0.04006	1.0	0.46596	-0.04091	0.00096	0.03431	-0.00341	-0.02668	0.00124	0.38681	0.01335	0.0062	0.02099	-0.04754	0.06091		
MII -	0.59913	0.69301	0.39792	0.46596	1.0	0.11679	0.08081	-0.0017	-0.04009	-0.00166	0.00178	0.87378	0.24223	0.01335	0.07336	0.1034	0.35188		
pt_j0 -	0.42483	0.21911	-0.21188	-0.04091	0.11679	1.0	0.66211	0.11736	-0.08108	0.35562	5e-05	0.1463	0.44381	0.00668	0.27776	0.69778	0.50353		- 0
pt_j1 -	0.20731	0.11667	-0.09322	0.00096	0.08081	0.66211	1.0	0.18207	-0.08491	0.37225	-0.00012	0.10173	0.30307	0.00587	0.10277	0.36814	0.37292		
DPhijj -	-0.123	-0.0585	0.17252	0.03431	-0.0017	0.11736	0.18207	1.0	0.01829	0.13433	0.00012	-0.00622	-0.0216	-0.00013	-0.17276	-0.21291	-0.02557		
DYjj -	-0.06202	-0.0354	-0.0195	-0.00341	-0.04009	-0.08108	-0.08491	0.01829	1.0	0.70438	-3e-05	-0.03706	0.00706	-0.00078	-0.13227	0.02363	0.32968		- 0
Mjj -	0.08736	0.04675	-0.10886	-0.02668	-0.00166	0.35562	0.37225	0.13433	0.70438	1.0	-9e-05	0.01277	0.20511	0.00191	-0.03253	0.28969	0.5524		
mtt -	0.00045	0.00072	0.00353	0.00124	0.00178	5e-05	-0.00012	0.00012	-3e-05	-9e-05	1.0	0.00171	-6e-05	1e-05	0.00089	0.00011	2e-05		
мт -	0.65716	0.60744	0.28947	0.38681	0.87378	0.1463	0.10173	-0.00622	-0.03706	0.01277	0.00171	1.0	0.48402	0.01247	0.35537	0.13479	0.3389		- 0
TrackMET -	0.60739	0.25722	-0.17579	0.01335	0.24223	0.44381	0.30307	-0.0216	0.00706	0.20511	-6e-05	0.48402	1.0	0.00664	0.34557	0.48951	0.4067		
HTSoft -	0.01139	0.01059	0.00447	0.0062	0.01335	0.00668	0.00587	-0.00013	-0.00078	0.00191	1e-05	0.01247	0.00664	1.0	0.00184	0.00637	0.00791		
METSig -	0.15777	0.06151	-0.05486	0.02099	0.07336	0.27776	0.10277	-0.17276	-0.13227	-0.03253	0.00089	0.35537	0.34557	0.00184	1.0	0.24889	0.03826		- 0.
ITrackMET-	0.41769	0.21747	-0.22126	-0.04754	0.1034	0.69778	0.36814	-0.21291	0.02363	0.28969	0.00011	0.13479	0.48951	0.00637	0.24889	1.0	0.48417		
SumMlj -	0.51072	0.39809	-0.09215	0.06091	0.35188	0.50353	0.37292	-0.02557	0.32968	0.5524	2e-05	0.3389	0.4067	0.00791	0.03826	0.48417	1.0		

Validation Metrics

2020/06/09

Matthew Basso (Toronto)

Validation Metrics (2)

2020/06/09

Matthew Basso (Toronto)

VH Discriminant Performance

Good ROC AUC, **good train-test agreement (worsens** in highest bins due to lack of stats)

Good ROC AUC, decent train-test agreement (tension in top in highest bins, disagreement in Z+jets due to poor statistics)

VBF Discriminant Performance

Excellent ROC AUC, excellent train-test agreement!

Top Discriminant Performance

Decent ROC AUC, good train-test agreement. Hard to separate from *WW*

Z+jets Discriminant Performance

Excellent ROC AUC, excellent train-test agreement! However, we do see in **tension in Z+jets, top, WW in highest bins** (yields are dominated by Z+jets, however)

2020/06/09

Matthew Basso (Toronto)

Poor ROC AUC, good train-test agreement. Hard to separate from top