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Overview

● Introduction:
– Physics problem: measuring (V->qq)(H->WW->lνlν)

● Rare process with large background contributions

● Machine learning:
– Motivation with a discussion of neural networks in particular
– Training and implementation: Keras+TensorFlow in Python

● Results:
– Performance and validation
– Binning optimization and regularization algorithm for statistical significance
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Introduction and Multiclassifier 
Development
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Introduction

● Discovery of scalar consistent with Higgs boson in 2012 by ATLAS and 
CMS at the LHC was a critical test of the Standard Model (SM) [1,2]
– Important to verify the SM in individual decay channels, e.g., H->ZZ, H->WW, H-

>γγ, etc. – deviations would point to Beyond the SM (BSM) physics 

● Here, we consider H->WW->lνlν
– H->WW 2nd highest branching fraction at √s = 13 TeV (after H->bb)
– Can’t reconstruct Higgs mass due to missing transverse energy (MET) carried 

away by neutrinos
– Observed (using threshold in p-value of 5σ) using a combination of the gluon-

gluon fusion (ggF), vector boson fusion (VBF), and associated (VH) production 
channels in ATLAS Run 1 [3] and ggF+VBF in ATLAS Early Run 2 [4]
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Introduction (2)

● Measurements of V(H->WW) (abbr. VH) have been made independently of 
ggF+VBF HWW for Run 1 [5] and Early Run 2 [6]
– Never reached 5σ “observation” – may be possible with 139 ifb of data from LHC Full Run 2 observation” – may be possible with 139 ifb of data from LHC Full Run 2 

● Consider 2-lepton VH channel: V(->qq)H(->lνlν)
– Looking for 2 different-flavour, opposite-sign (DFOS) leptons + MET and 2 jets
– Small signal (cross section ~100, ~10 times smaller than ggF, VBF) with large backgrounds:

● Top: top-antitop quark pair production (ttbar), single top production (Wt)
● Drell-Yan or Z+jets: Z->ττ in association with jets where the taus decay to DFOS leptons
● Diboson WW: irreducible background matching signal decay

– Analyzed in Run 1 using a cut-based analysis in 1 signal bin [5] – can we use machine 
learning to perform a better measurement (using Run 1 cuts as the baseline)?
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Relevant Feynman Diagrams

DFOS VH channel. 
Obtained from Fig. 1 
of Ref. [5].

Direction/spin of particles 
in HWW decay. Obtained 
from Fig. 3 of Ref. [3].Higgs production modes considered. 

Obtained from Fig. 1 of Ref. [3].
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Machine Learning and Neural 
Nets
● Multivariate analysis (MVA) techniques such as machine learning (ML) have 

seen widespread use in high-energy physics
– ML: attempts optimize a set of free parameters (“observation” – may be possible with 139 ifb of data from LHC Full Run 2 training”) to best map inputs to 

desired outputs (i.e., supervised learning)
– Exploits correlations between input variables in ways (rectangular) cut-based 

analyses cannot

● Neural nets (NNs): map input vectors to output vectors via a series linear 
matrix operations (“observation” – may be possible with 139 ifb of data from LHC Full Run 2 layers”) with (possibly) nonlinear functions applied to the 
output of each (“observation” – may be possible with 139 ifb of data from LHC Full Run 2 activations”)
– x’ = f(A.x + b) for a single layer, where f(...) is applied element-by-element
– Free parameters: choice of f(...), kernel (matrix) A, bias (vector) b
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Multiclassifiers and Samples

● Multiclassifiers: MVAs mapping inputs to >2 output classes (e.g., physics 
processes) – natural choice for our problem!
– For N output classes, get N output discriminants describing the probability of an 

event belonging to each class (Σoutputsoutputs = 1)

● Balance to be struck between too many classes and too few
– Signal-like: V(qq)H(lνlν), ggF(lνlν), VBF(lνlν)
– Background-like: top (ttbar + Wt), Z+jets, WW

● Exclude subleading backgrounds: other VV, W+jets (“observation” – may be possible with 139 ifb of data from LHC Full Run 2 fakes”), ...

● Use ATLAS Run 2 (2015-18) Monte Carlo (MC) samples for the processes 
of interest as well as Run 2 data for validation (work-in-progress!)
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Input Variable Definitions

● Choice of inputs is important! – based partly on DFOS VH Run 1 cuts [5] and Early 
Run 2 VBF MVA variables [4]
– Lepton variables:

● Leading/subleading lepton pT’s, dilepton angular separation Δφll, rapidity difference ΔYll, and mass Mll

– Jet/MET variables:
● Leading/subleading jet pT’s, dijet angular separation Δφjj, rapidity difference ΔYjj, and mass Mjj (|Mjj – 85 GeV|)
● Tau-tau mass using collinear approximation Mττ (|Mττ – MZ|, MZ = mass of Z boson) [7]
● Transverse mass MT = √((ET

ll + ET
miss)2 – |pT

ll + ET
miss|2)

● Track-based MET ET
miss,track

● Sum of all pT-hard objects + soft (track+calorimeter) contributions HT
soft [8]

● MET-based significance ET
miss / σ(ET

miss) [8]
● Sum of lepton/jet pT’s + track-based MET ΣoutputspT

total,track and all lepton-jet mass combinations ΣoutputsMlj

17 in total – could maybe 
be reduced by removing 
highly-correlated variables
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Preprocessing and Training

● Apply preselection (2 DFOS leptons with min pT, Mll cuts), Njets ≥ 2, and Nb-jets = 0 (to 
reject top) to our samples
– Raw yields: 127K VH, 115K ggF, 390K VBF, 2.00M top, 998K Z+jets, 1.59M WW

● Preprocessing performed with the help of scikit-learn [9]
– Median is subtracted from input variables and scaled to interquartile range (robust scaling)
– Sum of weights/class is scaled to 1 (to account for differing raw yields)
– Gaussian noise applied to inputs and throughout network to minimize overtraining

● Use Keras [10] with the TensorFlow [11] backend for training
– Hyperparameters (# of nodes/layer, learning rate, activation function) optimized using Ray 

[12] + Tune [13] with space defined using Hyperopt [14] (see Backup)
– Final training is performed using 80-20% train-test splitting with 5-way K-folding (see Backup)

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html
https://keras.io/
https://www.tensorflow.org/
https://docs.ray.io/en/master/
https://docs.ray.io/en/master/tune.html
http://hyperopt.github.io/hyperopt/
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Example Shape Distributions

● Shapes:
– x-axis is median 

scaled (unitless)
– Sum of weights 

per class is 
normalized to 1 
(to show shapes)

All input shape distributions 
included in Backup!

ΔY
jj
 is good discriminator 

for VH and VBF

Δφ
ll
 is a good discriminator for 

Higgs signal vs. background

ATLAS Work-
In-Progress

ATLAS Work-
In-Progress
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Optimized Network Structure
● Optimization metric: validation receiver-operator characteristic (ROC) curve area (AUC) 

– plots signal efficiency vs. background rejection (ideally AUC ~ 1)
● Network yielding highest ROC AUC (~0.87):

– # of nodes/layer (10 in total) = 20, 20, 40, 70, 20, 50, 40, 30, 40, 30
– Activation function = exponential linear unit (ELU)
– Learning rate (i.e., gradient descent step size) = 0.00222

● Other (static) network parameters/features:
– Batch size = 1024 and optimizer Adam
– Categorical crossentropy loss function (typical for multiclassifiers)
– Softmax output activation (typical for multiclassifiers, ensures Σoutputsoutputs = 1)
– Batch normalization at the output of each layer (to guard against large output values at specific 

nodes), early stopping during training (to guard against overtraining)

ATLAS work-
in-progress

https://keras.io/api/layers/activations/#elu-function
https://keras.io/api/optimizers/adam/
https://keras.io/api/losses/probabilistic_losses/#categoricalcrossentropy-class
https://keras.io/api/layers/activations/#softmax-function
https://keras.io/api/layers/normalization_layers/batch_normalization/
https://keras.io/api/callbacks/early_stopping/
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Multiclassifier Training/Validation 
Metrics and Performance
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Data-MC Comparisons @ 
Level of Inputs
● See all plots in the Backup

– Include additional processes: ZZ, WZ, 
V+γ, W+jets, ...

● Generally OK (0.9-0.95) data/MC 
agreement
– Disagreement is not completely 

understood, but it’s also not a 
showstopper

– We know we have imperfect Z+jets 
modelling

● Potentially fixed by applying a 
normalization factor derived in a Z+jets 
control region (e.g., see Run 1 [5])

● Not applied here

Covered in plots, but salmon 
histogram colour refers to VBF
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Correlation Matrix: Difference 
(MC – data)
● NNs rely on correlations 

between input variables:
– Expect NN to perform well 

on data if correlations are 
well modelled in MC

– Element-by-element 
difference in correlation 
matrices doesn’t exceed 
±0.08 – modelling seems 
satisfactory

– MC correlation matrix 
included in Backup

ATLAS Work-In-Progress
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VH Discriminant Performance

ROC calculation only considers signal to be 
VH (different from optimization definition)

Good ROC AUC Good training (training+validation) and testing 
agreement on linear and log scales (here, we 
show weighted average in output over all 5 NNs)

Validation metrics and performance plots for all outputs in Backup

ATLAS Work-
In-Progress

ATLAS Work-
In-Progress
Normalized

ATLAS Work-
In-Progress
Weighted
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Optimizing Discriminant 
Binning
● Ultimately, we want to fit our MVA in our VH discriminant

– Total significance of discovery ~ sum in quadrature of bin-by-bin significances

● We want to maximize total significance of discovery for our binning, use asymptotic 
formula (assuming Asimov data) [16] – it can be shown (assuming Poisson counting 
in signal region with Gaussian auxiliary measurement on background) that the 
significance of discovery goes as:

● In the above, s := MC signal, b := MC background, and σ = 10% as a (very!) rough 
estimation of background uncertainty (to penalize background in a bin)
– Statistics-only fit might also be a practical solution
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Optimizing Discriminant 
Binning (2)
● Consider binning our VH discriminant in [0.2, 1.0]

– Doesn’t need to be strictly bounded by 0.2, but [0.0, 0.2] is overwhelmingly background

● Progressively cut the range into 2 parts: if Z0 would decrease, don’t apply the 
cut; if Z0 would increase, apply the cut
– We don’t keep a bin if it doesn’t pass regularization: NVH , Nbkg > 3 for each bin

● Protect against upward fluctuations in data from 0

– Additional optimization: split each bin 5%-95%, 10-90%, 15-85%, ..., 90%-10%, 95%-
5% and pick the splitting which increases Z0 the most

● Also apply |Mjj – 85| < 15 GeV, ΔYjj < 1.2 (Run 1 orthogonality cuts with 
ggF+2jets analysis [5])
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Optimized Binning

● Optimized binning (rounded to reasonable sigfigs): [0.20, 0.39, 
0.45, 0.50, 0.53, 0.57, 0.61, 0.64, 0.68, 0.73, 1.00] – Z0 = 0.97 
(ATLAS work-in-progress)

Ignore vertical 
errors

ATLAS Work-
In-Progress

ATLAS Work-
In-Progress

ATLAS Work-
In-Progress

For reference: network deployed in 
C++ environment using lwtnn [15]

https://github.com/lwtnn/lwtnn
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Discussion

● Nominally, using Run 1 cuts (right) [5] on Run 
2 MC (normalized to 139 ifb) using the same 
significance formula yields Z0 = 0.29 (ATLAS 
work-in-progress)
– Not an entirely fair comparison, Run 1 used a 

single bin – maybe more appropriate to bin in MT 
in e.g. [50, 125] GeV using the same optimization 
algorithm

– In any case, a considerable improvement from 
what we started with!
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Summary

● Presented a (hopefully informative!) talk on the use of 
multiclassifiers for improved measurements of V(H-
>WW) in LHC physics analyses
– Summarized training and validation – nothing too suspect

– Asimov significance of discovery Z0 = 0.97 for the MVA over 
0.29 for the cut-based analysis (ATLAS work-in-progress)

– Mostly care about V(qq)H(lνlν), but multiclassifier also 
performs well for ggF and very well for VBF in the 2 jet bin
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Next Steps

● Defining control regions (CRs): possible to use other multiclassifier output discriminants 
to define CRs for constraining particular backgrounds
– Careful thought is needed in order to make the signal bins and the CRs orthogonal
– Alternatively, if non-MVA-discriminant cuts are used to define the CRs, we could merge classes 

like top and WW
● Or even merge VH+ggF and use the Run 1 orthogonality cuts to separate the two

● Binning optimization with some theory systematics and a fit
– e.g., 2-point theory systematics would be the most straightforward, e.g., parton shower uncertainty

● Simplified template cross-section (STXS) framework dictates VH hadronic be measured 
in |Mjj – 90| < 30 GeV [17]
– Eventually we will need to drop the Mjj input (unless we fit the entire VH discriminant distribution)
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Questions?
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Backup
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Input Shape Distributions

Everything is median-scaled and normalized!

ATLAS Work-In-
Progress

ATLAS Work-In-
Progress

ATLAS Work-In-
Progress

ATLAS Work-In-
Progress

ATLAS Work-In-
Progress

ATLAS Work-In-
Progress

ATLAS Work-In-
Progress

ATLAS Work-In-
Progress
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Input Shape Distributions (2) 

Everything is median-scaled and normalized!

ATLAS Work-In-
Progress

ATLAS Work-In-
Progress

ATLAS Work-In-
Progress

ATLAS Work-In-
Progress

ATLAS Work-In-
Progress

ATLAS Work-In-
Progress

ATLAS Work-In-
Progress

ATLAS Work-In-
Progress

ATLAS Work-In-
Progress
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K-Folding Demonstration

All Data (100%)

Training (80%) Testing 
(20%)K-fold 1 Validation Training

K-fold 2 Training Validation Training

K-fold 3 Training Validation Training

K-fold 4 Training Validation Training

K-fold 5 Training Validation

K-folding – break training data into 5 equal partitions 
where we are always training on 4 of the partitions 
and validating on 1 (to get feedback during training)

Reserved for 
final testing
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Hyperparamter Space

● Hyperparameter space defined by:
– Number of nodes/layer: 10 to 100 in steps of 10
– Activation function: exponential linear unit (ELU), 

rectified ELU (RELU)
– Learning rate: log-uniform sampling from 1e-7 to 1e-2

● CPU scheduling performed by Tune’s 
asynchronous HyperBand scheduler with 
HyperOpt search algorithm 

https://keras.io/api/layers/activations/#elu-function
https://keras.io/api/layers/activations/#relu-function
https://docs.ray.io/en/latest/tune-schedulers.html#asynchronous-hyperband
https://docs.ray.io/en/latest/tune-searchalg.html#hyperopt-search-tree-structured-parzen-estimators
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Data-MC Comparisons @ 
Level of Inputs
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Data-MC Comparisons @ 
Level of Inputs (2)

Data-MC Comparisons @ Level of 
Inputs
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Correlation Matrix: MC Raw

● Matrix of correlation 
factors in MC at the 
level of inputs 
– Larger correlations 

(e.g., ~>±0.7) could 
be indicative of 
variables which 
contain overlapping 
information 

ATLAS Work-In-Progress
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Validation Metrics

Spiking 
undesirable, 
could indicate 
overtraining

Similar comments, but 
validation generally performs 
better than training (expected)

ATLAS Work-In-Progress ATLAS Work-In-Progress
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Validation Metrics (2)

ATLAS Work-In-Progress

ATLAS Work-In-Progress
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VH Discriminant Performance

Good ROC AUC, good train-test agreement (worsens in highest 
bins due to lack of stats)

ATLAS Work-
In-Progress

ATLAS Work-
In-Progress
Normalized

ATLAS Work-
In-Progress
Weighted
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ggF Discriminant Performance

Good ROC AUC, decent train-test agreement (tension in top in 
highest bins, disagreement in Z+jets due to poor statistics)

ATLAS Work-
In-Progress

ATLAS Work-
In-Progress
Normalized

ATLAS Work-
In-Progress
Weighted
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VBF Discriminant 
Performance

Excellent ROC AUC, excellent train-test agreement!

ATLAS Work-
In-Progress

ATLAS Work-
In-Progress
Normalized

ATLAS Work-
In-Progress
Weighted
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Top Discriminant Performance

Decent ROC AUC, good train-test agreement. Hard to separate 
from WW

ATLAS Work-
In-Progress

ATLAS Work-
In-Progress
Normalized

ATLAS Work-
In-Progress
Weighted
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Z+jets Discriminant 
Performance

Excellent ROC AUC, excellent train-test agreement! However, we 
do see in tension in Z+jets, top, WW in highest bins (yields are 
dominated by Z+jets, however)

ATLAS Work-
In-Progress

ATLAS Work-
In-Progress
Normalized

ATLAS Work-
In-Progress
Weighted
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WW Discriminant Performance

Poor ROC AUC, good train-test agreement. Hard to separate from 
top

ATLAS Work-
In-Progress

ATLAS Work-
In-Progress
Normalized

ATLAS Work-
In-Progress
Weighted
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