Neutrino Oscillations at the T2K and Hyper-Kamiokande Experiments

Hyper-Kamiokande

Super-Kamiokande (ICRR, Univ. Tokyo)

Mark Hartz TRIUMF & Kavli IPMU, University of Tokyo CAP-PPD, June 9, 2020

Over hundreds of km baselines, study change of neutrino flavor through oscillations

Mass states propagate with relative phases

Produce neutrinos as weak states

V1,V2,V3

Interact as weak eigenstates 2

Super-Kamiokande (Far Detector)

Neutrino Oscillation Parameters

PMNS mixing matrix in standard 3-neutrino mixing framework:

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s^{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \\ \lambda ccessible through neutrino oscillations \\ s_{12} = sin\theta_{12}, \text{ etc.} \\ Three mixing angles \theta_{12}, \theta_{13}, \theta_{23} \\ \delta, \alpha_{21} \text{ and } \alpha_{31} \text{ may introduce new sources of CP violation} \\ \end{bmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha_{21}/2} & 0 \\ 0 & 0 & e^{i\alpha_{31}/2} \\ \lambda ccessible through neutrino oscillations \\ \delta, \alpha_{21} \text{ and } \alpha_{31} \text{ may introduce new sources of CP violation} \\ \end{pmatrix}$$

The flavor content of states oscillate as they traverse matter or vacuum:

$$P_{\alpha \to \beta} = \delta_{\alpha\beta} - 4 \sum_{i>j} \operatorname{Re} \left(U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^* \right) \sin^2 \left(\frac{\Delta m_{ij}^2 L}{4 E} \right)$$

+
$$2 \sum_{i>j} \operatorname{Im} \left(U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^* \right) \sin \left(\frac{\Delta m_{ij}^2 L}{2 E} \right)$$

los are

Dependence on mass squared differences of mass states, distance and energy

Mass Hierarchy (Ordering)

- Important interplay with neutrinoless double beta decay experiments

• Sensitive to mass ordering through oscillation effect when neutrinos propagate through matter

Long Baseline Neutrinos at T2K

~500 members, 69 Institutes, 12 countries

TZ ND280 Near Detector

T2K Overview

Neutrino Oscillations at T2K

Muon (anti)neutrino survival depends on sin²(20₂₃) and Δm^{2}_{32}

- **Electron (anti)neutrino appearance**
- $sin^2(\theta_{23})$, $sin^2(2\theta_{13})$ and Δm^2_{32} in leading term
- Sub-leading dependence on δ_{cp}
 - CP conservation at $\delta_{cp}=0,\pi$
 - Maximal CP violation at $\delta_{cp} = -\pi/2, \pi/2$
- Matter effect \rightarrow dependence on the mass hierarchy ullet
 - Normal Hierarchy (NH): enhanced rate for neutrinos, decreased for antineutrinos

Neutrino Detection at Super-K

Electron neutrino appearance signal:

Detected electron produces a shower: "fuzzy" ring

Muon neutrino survival signal:

Detected muon produces a sharp ring

Likelihood-based reconstruction development led by TRIUMF

Using Near Detector Data

Neutrino-nucleus Interaction Model

ND280 Data

Fit to ND280 data constrains neutrino flux parameters and interaction model parameters

T2K Data Collected

Analysis shown today: 3.1×10^{21} POT, 50%/50%neutrino/antineutrino Data collected through 2018

Future analysis: 33% increase in neutrino mode statistics

Accelerator has achieved 515 kW stable operation in 2019

Fitted ND280 Data - Neutrino Mode

Before Fit

PRELIMINARY

Model-data agreement significantly improved by fit of model to data

After Fit

PRELIMINARY

What We Observe

Predictions for $\delta_{cp} = -\pi/2$					
C	1e0de v-mode	1e0de $\bar{\nu}$ -mode	1e1de v-mode		
$\nu_{\mu} \rightarrow \nu_{e}$	59.0	3.0	5.4		
$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$	0.4	7.5	0.0		
Background	13.8	6.4	1.5		
Total predicted	73.2	16.9	6.9		
Systematic uncertainty	8.8%	7.1%	18.4%		
Data	75	15	15		

- Results largely consistent with $\delta_{cp} = -\pi/2$ hypothesis
- Observe 15 events in the single decay electron sample when 7 predicted

110

• Probability of fluctuation this large or larger in any of 5 samples is 7%

What We Observe

Predictions for $\delta_{cp} = -\pi/2$					
C	1e0de v-mode	1e0de $\bar{\nu}$ -mode	1e1de v-mo	de	
$\nu_{\mu} \rightarrow \nu_{e}$	59.0	3.0	5.4		
$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$	0.4	7.5	0.0		
Background	13.8	6.4	1.5		
Total predicted	73.2	16.9	6.9		
Systematic uncertainty	8.8%	7.1%	18.4%		
Data	75	15	15		

- Results largely consistent with $\delta_{cp} = -\pi/2$ hypothesis
- Observe 15 events in the single decay electron sample when 7 predicted
 - Probability of fluctuation this large or larger in any of 5 samples is 7%
 - 14

Nature 580 (2020) 7803, 339-344

- interval
- at 2σ

• Include constraint on θ_{13} from reactor experiments

 $\begin{array}{l} \text{Solution} \text{Solution} \\ 3\sigma \text{ range for } \delta_{cp} \end{array} \begin{array}{l} \text{NH: } [-3.41, -0.03] \\ \text{IH: } [-2.54, -0.32] \end{array} \end{array}$

• CP conserving value $\delta_{cp} = -\pi$ is still included in 3σ

• Both CP conserving values ($\delta_{cp} = 0, -\pi$) are disfavored

• Normal mass hierarchy preferred with posterior probability of 0.89

T2K Results - Atmospheric Parameters

 Δm_{32}^2 (NO), Δm_{13}^2 (IO) (eV²c⁻⁴) 2.7 2.6 2.5 2.3

• T2K measures $\sin^2\theta_{23} = 0.53 + 0.03 - 0.04$

• Remains consistent with 45° at the 1 sigma level

T2K Results - Atmospheric Parameters

Hyper-K In Canada

- Hyper-K Canada group formed in 2018
 - Supported by NSERC project grant
- Currently 11 faculty from 8 institutes looking to grow
- Hyper-K is now an IPP project

Hyper-K In Canada

- Hyper-K Canada group formed in 2018
 - Supported by NSERC project grant
- Currently 11 faculty from 8 institutes looking to grow
- Hyper-K is now an IPP project

BRITISH COLUMBIA INSTITUTE OF TECHNOLOGY

Main Ring AEA, Tokai)

©2007 Google™

Hyper-Kamiokande

- Fiducial mass is 8x larger than Super-Kamiokande
- Neutrino beam from J-PARC will be 2.5 times more intense (1.3 MW proton beam)
- New photon detectors and near detectors
- 20x the rate of long baseline neutrinos than the T2K experiment
- Not just accelerator-based neutrino experiment:
 - Proton decay searches
 - Supernova neutrino detection
 - Atmospheric neutrino detection
 - Solar neutrino detection
 - Dark matter search

Hyper-K approved in January 2020 **Construction phase has started! Start of operation planned in 2027**

Hyper-K Design Report: arXiv:1805.04163

Hyper-K Construction

Proton Decay

Discovery Potential

- Hyper-K excels in the $p \rightarrow e^+\pi^0$ channel, very high efficiency
- Largest fiducial mass

- Hyper-K is competitive p→vK+ channel, very high efficiency
- DUNE has potential for better efficiency since kaon is visible

Supernova Burst Neutrino

- Inverse beta decay and neutrino-electron scattering channels
- 54k-90k events for 10 kpc distant supernova
- ~ 10 neutrino events for supernova in Andromeda

- Neutrino-electron scattering introduces pointing capability
- 1.0-1.3 degree accuracy for 10 kpc distant supernova

CP Violation at Hyper-K

Appearance v mode

- Recall that T2K and NOvA are observing 10's of candidate events \bullet
- - 3% statistical error on the CP violation measurement is achieved
 - Controlling systematic errors is critical: T2K's current errors are ~6%

Appearance \overline{v} mode

Hyper-K will observe \sim 2000 electron neutrino and electron antineutrino candidates each

arXiv:1805.04163

Oscillation Measurements

Known Mass Hierarchy

- CP violation discovery for:
 - 76% of values at 3σ
 - 57% of values at 5σ

arXiv:1805.04163

• With atmospheric neutrino data, achieve $>4\sigma$ rejection of the wrong mass hierarchy

Systematic Error Reduction with IWCD

- Intermediate detector for Hyper-K
- Located about 1 km from neutrino source
- 600 ton water Cherenkov detector
- Position can be moved to different off-axis angles
- Loading with Gd to enhance neutron detection
- Using new high resolution multi-PMT modules inspired by KM3NeT
- Project led by Canadian institutes

Stage-1 approval at J-PARC as E61 https://j-parc.jp/researcher/Hadron/en/pac_1507/pdf/P61_2015-5.pdf

- 19 3-inch diameter PMTs integrated in module with high voltage and readout electronics lacksquare
- 3-inch PMTs developed with Hamamatsu to achieve 1.7 ns FWHM timing resolution
- Improved spatial and timing resolution compared to 20-inch PMTs is necessary for detector of lacksquareIWCD size
- Considered as a photodetector for Hyper-K detector as well

Machine Learning

- Improve reconstruction of indiscernible event topologies:
 - e/γ separation possible with improved granularity of mPMT in IWCD
 - Multi-ring: directionality of high-energy atmospheric v, nucleon decay
 - Neutron tagging
- First application of ResNet (type of CNN) looks promising
- Investigating several architectures:
 - Graph CNN, PointNet, GAN, UNET

gamma Softmax Output

Photogrammetry Calibration

- Fiducial volume of IWCD must be known with a bias of <1 cm
- The position of all mPMTs and calibration sources must be precisely measured
- Positions can change after water filling, so need in-situ measurement
- Photogrammetry:
 - Fixed cameras and remote operated submersible take pictures of the tank interior
 - Software able to build an accurate 3-D model of the detector

Water Cherenkov Test Experiment

- of IWCD size
- Need platform to test the hardware and validate the calibration, modeling and reconstruction techniques
- Operate detector with 4 m diameter in test beam line with incident particle fluxes of known type and moment

• Aim for unprecedented precision to reconstruct high energy events in a water Cherenkov detector

EMPHATIC Experiment

- Table top hadron production experiment improve neutrino flux simulation
- Unique application of technologies to hadron production measurements
 - Silicon strip tracking layers
 - Halbach array permanent magnet
 - Aerogel ring imaging Cherenkov detector for PID
- Operating in Fermilab MTEST beam line
 - 2018 Pilot Run
 - 2020 First Physics run with 100 mrad acceptance
 - 2021 Second physics run with 400 mrad acceptance

Conclusions

- T2K is providing world leading measurements of neutrino oscillations parameters
- Next phase: move to precisions measurements at Hyper-Kamiokande
 - Program includes neutrino oscillations, proton decay, supernova neutrinos, dark matter and more
 - Construction has started and planned start of operation in 2027
- Many Canadian efforts for Hyper-K focussed on control of systematic errors for precision measurements
 - Still room for new collaborators. Come join us!

Thank You

Mass Ordering Preference

- One of our analyses uses Markov Chain Monte Carlo to fit oscillation parameters
- Perform Bayesian statistical inference
 - Posterior probabilities and credible intervals
- Start with equal prior probability of normal and inverted hierarchy
- Normal hierarchy is preferred with posterior probability of 0.89

	$\sin^2 heta_{23} < 0.5$	$\sin^2\theta_{23} > 0.5$	Sum	
$\mathrm{NH}\;(\Delta m^2_{32}>0)$	0.184	0.705	0.889	
IH $(\Delta m^2_{32} < 0)$	0.021	0.090	0.111	
Sum	0.205	0.795	1	

T2K Systematic Errors

- Uncertainty on the relative rate of electron neutrino and electron antineutrino interactions
 - This is a purely theoretical estimate, no measurement
- Uncertainty on how nuclear effects impact inference of the neutrino energy

Jncertainty on $\nu_e/\bar{\nu}_e$ Candidates (%)
1.47
1.58
2.31
3.74
3.03
1.49
0.18
5.87