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Background/Purpose

* NEWS-G Is a dark matter experiment that detects
lonization caused by dark matter particles colliding
with atomic nuclel in gas.

* Dark matter particles are expected to be neutral.

* Neutrons are a good tool for calibrating the detector
response (see Marie Vidal's talk from Monday).

* NEWS-G looks for lightweight dark matter, so
Intermediate-energy (~30 keV) neutrons are
desired.
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How to Make Neutrons

n
/En > 29.68 keV
p —)
E, > 1.88 MeV

* In nuclear lingo this is ‘Li(p,n)'Be.

* Li metal is very reactive, so LiF is used for stability.

* LiF is still hygroscopic (and toxic).

* There are other useful reactions we could use.

* '‘Be Is radioactive with an inconvenient 53-day half-life, but
only 10% of decays actually radiate, and the guantity
produced is small.
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Why RMTL at Queen’s?

* The LIiF technique Is very inefficient as E, approaches
the minimum of 29.64 keV.

* Previously-used neutron beams at particle physics
facilities do not have enough beam current to overcome
the low efficiency.

* The Reactor Materials Testing Laboratory is an 8 MeV
tandem accelerator in Kingston Ontario.

* As a nuclear irradiation facility, RMTL has enough
current (45pA) to produce a usable neutron rate.

* Our goal Is to produce a beam of quasi-monoenergetic
neutrons at ~30 keV.

4/42



What have we accomplished?

 We did 3 beam tests with a LiF target in 20109.
- We measured the neutron production rate across the
production threshold.

- We obtained neutron spectra at two different beam
energies.

* New LiF targets were made at Université de Montréal.

* We have a design for a multi-target holder.

* We have improved simulations of spectrum broadening
by materials.
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RMTL Irradiation Tests
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Neutron Dose Rate (1 S/hour)
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1: Handheld gamma and
neutron detectors with pulse-
shape discrimination.
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Lessons from Test 1

* LIF target is qualified for up to 20uA at 2.3 MeV.

e Target barely gets warm with the existing water cooling
system (~46W power, 32°C max).

* More neutrons than expected near threshold.

* Angular distribution measurement inconclusive.

Test 2 goals:

* Take more data at proton energies near threshold.
* Measure neutron spectrum near threshold.
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Overview of Second Test
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Neutron Spectrum at 1.87 MeV
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L essons from Test 2

* Neutron spectrum Is very broad:

- The cooling system uses water.

- The room Is small enough that neutrons
can bounce around several times.

* Neutron production started at ~1.84 MeV

- We need more neutron rate vs proton
energy points.
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Neutron Area Monitor
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Wall Monitor Neutron Rate (u Sv/hour)
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Lessons from Test 3

* Proton beam energy is either offset or
broadened by ~30 keV.

* Next steps:

- Take neutron spectrum with water cooling
off and cooling block removed.

* This requires more-direct thermal
monitoring.

- Add shielding for reflected neutrons.
- Repeat tests with new (thinner) targets.
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Simulations



Neutron Transport

* Alexis Brossard, (new post-doc) provided a
GEANT4 simulation program to allow
multiple layers of material.

* |t simulates N neutrons with energy E going
through 5 layers of material.

* The output Is the spectrum of neutrons,
gammas, etc that have escaped all the
layers of material.

* This will help us design shielding to reduce
scattered neutron, and plan experiments.
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Attenuation
Through Materials
(Single Layer)

Data points are median energies,
upper and lower bars are quartiles.

<——25% have more energy than this

<——Middle value of energy (median)

<——25% have less energy than this
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Neutron attenuation in Stainless Steel
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Targets

22222



Old Target
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New Targets

Hole size 1.1-1.2 mmdia

A
N
~
[
®
Drill depth to centre of plate
12 mm

* 3 new targets
* Tantalum machining at Queen’s

* Chemical vapor deposition at
Université de Montréal
* Different LIF thicknesses:
250nm, 120 nm, and 38 nm —_
* Corresponding energy loss for 1"?

1.88 MeV protons is
10 keV, 5 keV, and 1.5 keV,

respectively.
* Hole for direct thermocouple
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Multi-Target Holder



Multi-Target Holder

* Matthew Mawby (undergraduate) did a
senior engineering thesis project to design a
holder for multiple targets.

* The targets can be selected without
breaking vacuum.

* Allowed budget was 5000%, not including
stands.

* Very thorough - with final touches we could
actually make this.
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Multi-Target Holder 2

Vented Screw ‘

cosaare |« New single-target

holder with smaller
e footprint.

Thermocouple || © MUlti'hOIder takeS 5
single holders.

* Countersunk holes
minimize outgoing
neutron scattering.

* FEA was done to

LiF or V Active
Layer

Ta Front Plate

Aluminum
Nitride Spacer

Blank 1S0160-K |

Flange ensure safety factors.
Gasket
i Countersunk
Holes Behind
Targets
Individual
Target
Assembly
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Multi-Target Holder 3

* |ISO160-K bellows minimum bending radius is 317.5mm.
* A 254mm-long bellows gives maximum displacement of of 50.12mm.
* Necessary displacements <= 44.02mm.

Connecting Rods

t Tee Pipe

Swivel Joint and Nut

Reducer

Vacuum Bellows

Electrical
Feedthrough

Clamps

Target Plate Assembly

Square Plates

This flange is fixed.

This flange moves.
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What's Next?

* Do beam tests with new targets to confirm
we can eschew water cooling.

* Do beam tests with passive cooling only.

* Finish compact shield design to block
reflected neutrons (using the simulations).

* Build shielding and do tests.
e Do tests with a NEWS-G detector.

28/42



The End
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Li(p,n)Be cross-section
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Total Neutron Rate (n/s)

Total Neutron Production Rate‘{ﬂ) UA Beam Current}\

10" — RMTL Licence Limit . ——"
10° |
K 1.5e+08 n/s at 1.9 MeV (19W heat load)
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This is integrated over the full 4mr emission angle and all neutron energies, for a

monochromatic beam, with a thick target.
A larger beam current helps us get closer to threshold while maintaining a usable

neutron rate. The heat load on the target is a limiting factor.
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Neutron Spectrum at Ep = 2.3 MeV

160

140 il

120

1m distance, 22 degrees from proton beam axis i

100 |

80 -

n/(cm? s)

60 [

40 |

20

| ! Lol 1 Lo el L L 3 aaaul L Lo el 1 Lo el \ PR "‘.
102 101 100 101 102 103 104
Neutron Energy (keV) 34/4

0 | L R | L g gl
105 104 103



0 Bk
;3

Target

Neutron Angular Spectrum

] -~ -g0n°
, +22%o 'l "'-,_..9.0
I
)

Neutron Angular Emission Spectrum (Test 1) ws”

1.6

Not to scale

1.55

Neutron Rate Ratio

1.5

1.45

1.4

1.35

1.3

_lllII|IIlllllll[[lII|II]1|IIII[[III|I

1 | 1 1 [l 1 | | 1 | | I 1 1 | | | 1 | 1 1 I |
-100 -50 0 50 100
Angle From Beam Axis

125

35/42



MNeutron Rate Ratio

Neutron Angular Emission Spectrum (Test 2)
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GN+ CLYC Count Rates (2)

Neutron Rates for Multiple Irradiations (Test 2)
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Proton Beam

* RMTL has a 1-8 MeV proton beam.

* The precision of accelerator voltage is 0.1%
- (=>4 keV steps In principle)

* The beam profile is not monitored or even
known. We can close slits to narrow the
profile of the pre-accelerator H- ions.

* The beam current is 0.05~45 pA.
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Old Nuclear Target

* We have on-hand a 1um LiF target on tantalum
backing.

* The neutron production threshold is 1880.57 keV.

* Our target is “semi-thick”: protons do lose non-
negligible energy In the target, but won'’t always dip
below threshold.

* Neutrons produced at threshold have 29.68 keV.

* Above threshold, neutrons of different energies have
different emission angles.

* The neutron production rate drops precipitously near
threshold.
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Top Handles

./\

Multi-Target

Holder 4

Horizontal Crossbars Side Handles

* |nitial design is for manual movement.

* Easily upgradable to linear actuators.

-

Vertical Crossbars

Centering Rings and

Swivel Joint and Nut

Individual Target
Assembly
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