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Background/Purpose

● NEWS-G is a dark matter experiment that detects 
ionization caused by dark matter particles colliding 
with atomic nuclei in gas.

● Dark matter particles are expected to be neutral.

● Neutrons are a good tool for calibrating the detector 
response (see Marie Vidal’s talk from Monday).

● NEWS-G looks for lightweight dark matter, so 
intermediate-energy (~30 keV) neutrons are 
desired.
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How to Make Neutrons

7Lip
E

p
 > 1.88 MeV

7Be

n
             E

n
 > 29.68 keV

● In nuclear lingo this is 7Li(p,n)7Be.
● Li metal is very reactive, so LiF is used for stability.
● LiF is still hygroscopic (and toxic).
● There are other useful reactions we could use.
● 7Be is radioactive with an inconvenient 53-day half-life, but 

only 10% of decays actually radiate, and the quantity 
produced is small.
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Why RMTL at Queen’s?

● The LiF technique is very inefficient as En approaches 
the minimum of 29.64 keV. 

● Previously-used neutron beams at particle physics 
facilities do not have enough beam current to overcome 
the low efficiency.

● The Reactor Materials Testing Laboratory is an 8 MeV 
tandem accelerator in Kingston Ontario.

● As a nuclear irradiation facility, RMTL has enough 
current (45μA) to produce a usable neutron rate.A) to produce a usable neutron rate.

● Our goal is to produce a beam of quasi-monoenergetic 
neutrons at ~30 keV.
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What have we accomplished?

● We did 3 beam tests with a LiF target in 2019.

– We measured the neutron production rate across the 
production threshold.

– We obtained neutron spectra at two different beam 
energies.

● New LiF targets were made at Université de Montréal.

● We have a design for a multi-target holder.

● We have improved simulations of spectrum broadening 
by materials.
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RMTL Irradiation Tests
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Test 1

Photos from Test 1
Sept 12, 2019

Neutron spectrometer

Thermocouple lead

Current readout

Insulating 
spacers
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1.5 MeV 
(below threshold, no neutrons)

1.88 MeV (E
th
)

2.3 MeV --> 
(above threshold, near 
1st production peak)

NNS 
Tuning

NNS Run
(8 moderator layers)

20 uA

Overview of First Test

Area monitor ~3m from target.
Qualifying at 
higher current.
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GN+ CLYC1 Count Rates

We moved one counter to 
different angles for each 
irradiation.

1: Handheld gamma and 
neutron detectors with pulse-
shape discrimination.

44.5° 58.4° -46.3° -74.5° 83.5° -150° 93.0° 0.0°
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Lessons from Test 1

● LiF target is qualified for up to 20uA at 2.3 MeV.
● Target barely gets warm with the existing water cooling 

system (~46W power, 32°C max).
● More neutrons than expected near threshold.
● Angular distribution measurement inconclusive.

Test 2 goals:
● Take more data at proton energies near threshold.
● Measure neutron spectrum near threshold.
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Recall E
th
 = 1.88 MeV
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Overview of Second Test

NNS Tuning 
(1.87 MeV)

1.89 MeV

NNS Run (1.87 MeV)

1.85 MeV

1.75, 1.80 MeV 1.84 MeV

Elapsed Time (hours)
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Neutron Spectrum at 1.87 MeV

E
n
 minimum 

at threshold
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Lessons from Test 2

● Neutron spectrum is very broad: 
– The cooling system uses water.
– The room is small enough that neutrons 

can bounce around several times.

● Neutron production started at ~1.84 MeV
– We need more neutron rate vs proton 

energy points.
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Test 3

2.0 MeV

1.97 MeV

1.94 MeV

1.91 MeV

1.89 MeV

1.86 MeV

1.83 MeV

Elapsed Time (hours)
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Threshold energy in 
literature.

A = 28.0 ± 0.3 μA) to produce a usable neutron rate.Sv/h
μA) to produce a usable neutron rate. = -1.9000 ± 0.0004 MeV 
σ = 0.0160 ± 0.0004 MeV
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Lessons from Test 3

● Proton beam energy is either offset or 
broadened by ~30 keV.

● Next steps:
– Take neutron spectrum with water cooling 

off and cooling block removed.
● This requires more-direct thermal 

monitoring.
– Add shielding for reflected neutrons.
– Repeat tests with new (thinner) targets.
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Simulations
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Neutron Transport

● Alexis Brossard, (new post-doc) provided a 
GEANT4 simulation program to allow 
multiple layers of material.

● It simulates N neutrons with energy E going 
through 5 layers of material.

● The output is the spectrum of neutrons, 
gammas, etc that have escaped all the 
layers of material.

● This will help us design shielding to reduce 
scattered neutron, and plan experiments.
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Matches NIST 
PSTAR tables

Our target is 
1000 nm thick.

Attenuation 
Through Materials
(Single Layer)
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Data points are median energies, 
upper and lower bars are quartiles.

25% have more energy than this

Middle value of energy (median)

25% have less energy than this

1cm of water 
eliminates ~40% 
of our neutrons!

(mm)
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Aluminium

(mm)

Neutron attenuation in Aluminium

Comparing 
Materials

Neutron attenuation in Stainless Steel
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Targets
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Current readout

Insulating 
spacers

Old Target

The target was 
quite surprised by 
the proton beam.
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New Targets

● 3 new targets 
● Tantalum machining at Queen’s
● Chemical vapor deposition at 

Université de Montréal
● Different LiF thicknesses:

250nm, 120 nm, and 38 nm
● Corresponding energy loss for 

1.88 MeV protons is 
10 keV, 5 keV, and 1.5 keV, 
respectively.

● Hole for direct thermocouple 
measurement.
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Multi-Target Holder



25/42

Multi-Target Holder

● Matthew Mawby (undergraduate) did a 
senior engineering thesis project to design a 
holder for multiple targets.

● The targets can be selected without 
breaking vacuum.

● Allowed budget was 5000$, not including 
stands.

● Very thorough - with final touches we could 
actually make this.
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Multi-Target Holder 2

● New single-target 
holder with smaller 
footprint.

● Multi-holder takes 5 
single holders.

● Countersunk holes 
minimize outgoing 
neutron scattering.

● FEA was done to 
ensure safety factors.
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Multi-Target Holder 3

● ISO160-K bellows minimum bending radius is 317.5mm.
● A 254mm-long bellows gives maximum displacement of of 50.12mm.
● Necessary displacements <= 44.02mm.

Proton Beam

This flange moves.

This flange is fixed.
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What’s Next?

● Do beam tests with new targets to confirm 
we can eschew water cooling.

● Do beam tests with passive cooling only.
● Finish compact shield design to block 

reflected neutrons (using the simulations).
● Build shielding and do tests.
● Do tests with a NEWS-G detector.



29/42

The End
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Backup/Photo Slides
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Spherical Proportional Counter
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Li(p,n)Be cross-section

Below threshold: 
no neutrons as 
expected.

At threshold: 
more neutrons 
than expected.

Near resonance: 
lots of neutrons 
as expected.
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This is integrated over the full 4π emission angle and all neutron energies, for a 
monochromatic beam, with a thick target.
A larger beam current helps us get closer to threshold while maintaining a usable 
neutron rate.  The heat load on the target is a limiting factor.
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Neutron Spectrum at E
p
 = 2.3 MeV

1m distance, 22 degrees from proton beam axis

E
p
-E

th
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Neutron Angular Spectrum
NNS
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Target

Not to scale
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GN+ CLYC Count Rates (2)

165° 138° 118° 87° 64.5° 42° 42° 42°
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Proton Beam

● RMTL has a 1-8 MeV proton beam.
● The precision of accelerator voltage is 0.1% 

– (=> 4 keV steps in principle)
● The beam profile is not monitored or even 

known. We can close slits to narrow the 
profile of the pre-accelerator H- ions.

● The beam current is 0.05~45 μA) to produce a usable neutron rate.A.
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Old Nuclear Target

● We have on-hand a 1μA) to produce a usable neutron rate.m LiF target on tantalum 
backing.

● The neutron production threshold is 1880.57 keV.
● Our target is “semi-thick”: protons do lose non-

negligible energy in the target, but won’t always dip 
below threshold.

● Neutrons produced at threshold have 29.68 keV.
● Above threshold, neutrons of different energies have 

different emission angles.
● The neutron production rate drops precipitously near 

threshold.
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Multi-Target 
Holder 4

● Initial design is for manual movement.
● Easily upgradable to linear actuators.
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