An Intermediate-Energy Neutron Beam for Calibrating Dark Matter Detectors

CAP Virtual Congress 2020 Tuesday June 9th Jean-François Caron

Background/Purpose

- NEWS-G is a dark matter experiment that detects ionization caused by dark matter particles colliding with atomic nuclei in gas.
- Dark matter particles are expected to be neutral.
- Neutrons are a good tool for calibrating the detector response (see Marie Vidal's talk from Monday).
- NEWS-G looks for lightweight dark matter, so intermediate-energy (~30 keV) neutrons are desired.

How to Make Neutrons

- In nuclear lingo this is ${}^{7}\text{Li}(p,n){}^{7}\text{Be}$.
- Li metal is very reactive, so LiF is used for stability.
- LiF is still hygroscopic (and toxic).
- There are other useful reactions we could use.
- ⁷Be is radioactive with an inconvenient 53-day half-life, but only 10% of decays actually radiate, and the quantity produced is small.

Why RMTL at Queen's?

- The LiF technique is very inefficient as E_n approaches the minimum of 29.64 keV.
- Previously-used neutron beams at particle physics facilities do not have enough beam current to overcome the low efficiency.
- The Reactor Materials Testing Laboratory is an 8 MeV tandem accelerator in Kingston Ontario.
- As a nuclear irradiation facility, RMTL has enough current (45µA) to produce a usable neutron rate.
- Our goal is to produce a beam of quasi-monoenergetic neutrons at ~30 keV.

What have we accomplished?

- We did 3 beam tests with a LiF target in 2019.
 - We measured the neutron production rate across the production threshold.
 - We obtained neutron spectra at two different beam energies.
- New LiF targets were made at Université de Montréal.
- We have a design for a multi-target holder.
- We have improved simulations of spectrum broadening by materials.

RMTL Irradiation Tests

Overview of First Test

1: Handheld gamma and neutron detectors with pulse-shape discrimination.

GN+ CLYC¹ Count Rates

Neutron Rates for Multiple Irradiations

Lessons from Test 1

- LiF target is qualified for up to 20uA at 2.3 MeV.
- Target barely gets warm with the existing water cooling system (~46W power, 32°C max).
- More neutrons than expected near threshold.
- Angular distribution measurement inconclusive.

Test 2 goals:

- Take more data at proton energies near threshold.
- Measure neutron spectrum near threshold.

Overview of Second Test

Neutron Spectrum at 1.87 MeV

Lessons from Test 2

- Neutron spectrum is very broad:
 - The cooling system uses water.
 - The room is small enough that neutrons can bounce around several times.
- Neutron production started at ~1.84 MeV
 - We need more neutron rate vs proton energy points.

Test 3

Neutron Area Monitor

Neutron Production Threshold

Lessons from Test 3

- Proton beam energy is either offset or broadened by ~30 keV.
- Next steps:
 - Take neutron spectrum with water cooling off and cooling block removed.
 - This requires more-direct thermal monitoring.
 - Add shielding for reflected neutrons.
 - Repeat tests with new (thinner) targets.

Simulations

Neutron Transport

- Alexis Brossard, (new post-doc) provided a GEANT4 simulation program to allow multiple layers of material.
- It simulates N neutrons with energy E going through 5 layers of material.
- The output is the spectrum of neutrons, gammas, etc that have escaped all the layers of material.
- This will help us design shielding to reduce scattered neutron, and plan experiments.

Attenuation Through Materials (Single Layer)

Data points are median energies, upper and lower bars are quartiles.

25% have *more* energy than this Middle value of energy (median) 25% have less energy than this

Proton attentuation in G4_LITHIUM_FLUORIDE

Neutron attentuation in G4_WATER

Comparing Materials

Targets

Old Target

New Targets

- 3 new targets
 - Tantalum machining at Queen's
 - Chemical vapor deposition at Université de Montréal
- Different LiF thicknesses:
 250nm, 120 nm, and 38 nm
- Corresponding energy loss for 1.88 MeV protons is 10 keV, 5 keV, and 1.5 keV, respectively.
- Hole for direct thermocouple measurement.

Plate dimensions 24 x 24 x 2 mm

Hole size 1.1 - 1.2 mm dia

Drill depth to centre of plate
12 mm

- Matthew Mawby (undergraduate) did a senior engineering thesis project to design a holder for multiple targets.
- The targets can be selected without breaking vacuum.
- Allowed budget was 5000\$, not including stands.
- Very thorough with final touches we could actually make this.

- ISO160-K bellows minimum bending radius is 317.5mm.
- A 254mm-long bellows gives maximum displacement of of 50.12mm.
- Necessary displacements <= 44.02mm.

What's Next?

- Do beam tests with new targets to confirm we can eschew water cooling.
- Do beam tests with passive cooling only.
- Finish compact shield design to block reflected neutrons (using the simulations).
- Build shielding and do tests.
- Do tests with a NEWS-G detector.

The End

Backup/Photo Slides

Spherical Proportional Counter

Li(p,n)Be cross-section

Total Neutron Production Rate (10 μA Beam Current)

This is integrated over the full 4π emission angle and all neutron energies, for a monochromatic beam, with a thick target.

A larger beam current helps us get closer to threshold while maintaining a usable neutron rate. The heat load on the target is a limiting factor.

Neutron Spectrum at $E_p = 2.3 \text{ MeV}$

Neutron Angular Spectrum

Neutron Angular Emission Spectrum (Test 1)

Not to scale

Neutron Angular Emission Spectrum (Test 2)

GN+ CLYC Count Rates (2)

Neutron Rates for Multiple Irradiations (Test 2)

Proton Beam

- RMTL has a 1-8 MeV proton beam.
- The precision of accelerator voltage is 0.1%
 - (=> 4 keV steps in principle)
- The beam profile is not monitored or even known. We can close slits to narrow the profile of the pre-accelerator H- ions.
- The beam current is $0.05~45~\mu A$.

Old Nuclear Target

- We have on-hand a 1µm LiF target on tantalum backing.
- The neutron production threshold is 1880.57 keV.
- Our target is "semi-thick": protons do lose nonnegligible energy in the target, but won't always dip below threshold.
- Neutrons produced at threshold have 29.68 keV.
- Above threshold, neutrons of different energies have different emission angles.
- The neutron production rate drops precipitously near threshold.

Initial design is for manual movement.

Easily upgradable to linear actuators.

Centering Rings and

Individual Target Assembly