

Nuclear ionization yield measurements in Neon gas for NEWS-G

Marie Vidal
CAP Congress 2020
June 8th

NEWS-G

- Main goal: search for low mass Dark Matter
- Other applications: Coherent elastic neutrino-nucleus scattering ,or CEνNS, detection (future project).
- Spherical metallic vessel filled with noble gas + HV on central anode: Spherical Proportional Counter.

Prototype Sedine: Laboratoire souterrain de Modane

Detectors

- Diameter: 15, 30, 60, 140 cm
- Sphere: stainless steel, copper, glass, aluminum
- Sensor diameter: 1 16 mm
- Gas: Neon, Argon, Helium, CH₄
- High voltage on sensor: $\vec{E} \sim 1/r^2$
- Large gain
- Low energy threshold, independent of the SPC size
- No e⁻/nr discrimination for P>200mbar
- Discrimination surface/volume events

Queen's University lab

SPC: principle

- 1. Primary ionization

 Mean energy necessary to generate 1 e⁻/ion

 pair: ~30eV in Neon
- 2. Drift of primary e⁻ towards sensor
 Typical drift times:
 ~ 100 μs for 30cm Ø
- 3. Avalanche in the vicinity of the anode Generation of thousands of secondary e-/ion pairs
- Signal formation
 Current induced by ions → sphere surface

Motivation for ionization yield measurements

- Energy calibration of gaseous detector: γ or X sources γ or X rays interact with electrons \rightarrow electronic recoils (E_{ee})
- (ν, χ) interact with nuclei \rightarrow nuclear recoils (E_{nr})
- → don't ionize the same amount of gas.
- The ionization yield, or quenching factor, is the ratio of the number of charges produced by an electron and a nuclear recoil of the same energy.

$$QF(E_{nr}) = \frac{E_{ee}}{E_{nr}}$$

• It is also the scale to go from the energy observed (E_{ee}) to the total nuclear recoil energy (E_{nr}).

Quenching factor measurements

- QF measurements priority for NEWS-G (interpretation of data): low energies
- → 1st QF measurement in Neon gas
- Source of known nuclear recoil energies (E_{nr}):
 - Neutrons scatter off nuclei
 - We know the neutrons energy
 - Monoenergetic neutron beam
- The TUNL (Triangle University National Laboratory) facility has a tandem 10MV accelerator [1].
 - Organization of 2 measurement campaigns.
- Today, I'll be talking about the 2019 measurements.

2019 QF experiment summary

•	Gas: Neon	+ CH ₄	(97:3)	@ 2 bar
	O 0.01 . 10 0	• • 4	$\cdot \cdot $	

- $E_n = 545 \pm 20 \text{ keV}$
- calculated nuclear recoil energy (E_{nr})
- scattering angle given by the position of the backing detectors.
- 8 energy points: 0.34 to 6.8 keV_{nr} (see table).
- energy detected (E_{ee})

Run	$E_{nr} [keV_{nr}]$	θ [o]
8	6.8	29.02
7	2.93	18.84
14	2.02	15.63
9	1.7	14.33
10	1.3	12.48
14	1.03	11.13
11	0.74	9.4
14	0.34	6.33

- Backing detectors (BDs): DAQ trigger on BDs
- Beam Pick-off Monitor (BPM): TOF neutrons
- Energy calibration: ⁵⁵Fe source

Quenching factor: 2 Experimental Set Ups

Annulus configuration

Multiple energy configuration

- Annulus configuration:
 - 8 BDs at the same scattering angle \rightarrow same E_{nr}
 - 5 energy runs: from 6.8 keV_{nr} down to 0.7 keV_{nr}
- Multiple energies configuration:
 - To reach 0.3 keV_{nr}
 - 3 nuclear recoil energies recorded: 0.3, 1 and 2 keV_{nr}

⁵⁵Fe calibration

- Monitor the energy scale and eventual gain drift.
 - calibration data taken every 1h for 5 min.
- The energy scale was extracted from the ⁵⁵Fe calibration data.
 - gaussian to describe ⁵⁵Fe peak.
- Some fluctuation of the energy scale but mostly constant in time.
- Plot shows the energy scale evolution throughout the experiment.

Summary of the cuts

- PSD: discriminate gamma and neutron events, psd_n > ~1.3
- Time of Flight (TOF): $T_{n,BD} T_{n,BPM}$, TOF specific to each energy run.
- Onset time:
 - onset = time when the pulse reaches 10% of its amplitude.
 - DAQ: coincidence events between BD and SPC results in a pulse centered at 40 μs .
 - Expect to see excess of events at 40 μs : recoils events.
- Rise time:
 - reject surface events

Data: energy spectra

Analysis

- Recoil peaks can't be modelled by a gaussian.
 - We can't use the mean of the peak to calculate the QF.
 - \rightarrow QF(E_{nr}) = $\mu_{E_{ee}}$ / $\mu_{E_{nr}}$
 - Asymmetric distribution.
- We need to model the signal events to understand the recoils distribution.
- Goal is to do a join likelihood fit and extract the parameters of the quenching factor using all data sets.
- The likelihood is: P(data | parameters)

Signal model

- Geometry of the experiment:
 - scattering angle distribution
 - impact E_{nr} spectrum
- Neutron energy distribution
- Response of the detector:
 - Primary ionization: Poisson
 - Secondary ionization (avalanche): Polya
- Include quenching factor:
 - a parametrization of the quenching factor, based on the Lindhard theory [2].
- Distribution of the energy scale throughout the volume.

Fit and data

Conclusion

- We demonstrated the feasibility of QF measurements in gases using a SPC and a neutron beam.
- We successfully took data in Neon gas: first time!
- We reached single electron sensitivity: 80 eV.
- The analysis is almost complete.
- Results will be published soon.

Thank you

Any questions?

Backup slides

NEWS-G: Example pulse

Amplitude provides estimation of the energy of the event.

Rise time provides an estimation of the radial distance of the event \rightarrow Rise time linked to diffusion of the electrons along their drift toward anode.

Experiment conditions

Shieldings have been added around the beam line.

Polyethylene doped with B for neutron capture

Lead wall for gammas

Lead shield on backing detectors to improve gammas background

Fe55 energy spectrum

Building the energy spectra

Volume sampling

- Volume sampled by the ⁵⁵Fe source (left plot).
- Volume sampled by the recoils (right plot).
- Recoil events sample a larger region of the electric field (volume).

