

Search for 5.5 MeV Solar Axions in DEAP-3600

Carl Rethmeier for the DEAP-3600 Collaboration

2020 CAP PPD Virtual Sessions

Axions and CP Symmetry

- Axions are theoretical particles proposed to solve the strong CP problem
 - They are also a compelling dark matter candidate
- CP symmetry \rightarrow interaction is invariant under:
 - Charge: Particle \leftrightarrow antiparticle
 - Parity: e.g., $(X, Y, Z) \rightarrow (-X, -Y, -Z)$
- CP violation observed in weak interaction
- Strong CP problem
 - Why has CP violation not been observed in the strong interaction?

CP Conserved in Strong Interaction

• CP expected to be broken in strong interaction

•
$$\mathcal{L}_{QCD} = \overline{\psi} i \gamma^{\mu} D_{\mu} \psi + \frac{1}{4} G^2 + \frac{g^2 \overline{\theta}}{32\pi^2} G \widetilde{G}$$

CP Conserved in Strong Interaction

• CP expected to be broken in strong interaction

•
$$\mathcal{L}_{QCD} = \overline{\psi} i \gamma^{\mu} D_{\mu} \psi + \frac{1}{4} G^2 + \frac{g^2 \overline{\theta}}{32\pi^2} G \widetilde{G}$$

• From experiment: $\overline{\theta} < 1.98 \times 10^{-10}$ radians [1]

1. J. Dragos, T. Luu, A. Shindler, J. de Vries, and A. Yousif, *arXiv:1902.03254* (2019).

CP Conserved in Strong Interaction

- Axion field has "vev" at $a = -\frac{f_a}{\zeta}\bar{\theta}$ **CP expected to be broken in strong interaction** $\mathcal{L}_{QCD} = \bar{\psi}i\gamma^{\mu}D_{\mu}\psi + \frac{1}{4}G^2 + \frac{g^2\bar{\theta}}{32\pi^2}G\tilde{G} \frac{1}{2}\partial_{\mu}a\partial^{\mu}a + \mathcal{L}_{int}[\partial^{\mu}a/f_a;\psi] + \zeta \frac{a}{f_a}\frac{g^2}{32\pi^2}G\tilde{G}$ CP expected to be broken in strong interaction • From experiment: $\overline{\theta} < 1.98 \times 10^{-10}$ radians [1] Peccei-Quinn (PQ) Theory [2]

- Peccei-Quinn (PQ) theory solves Strong-CP Problem
 - Predicts a new particle, the axion [3,4]
 - Axions are very light and interact very rarely

- 1. J. Dragos, T. Luu, A. Shindler, J. de Vries, and A. Yousif, arXiv:1902.03254 (2019).
- 2. R. D. Peccei and H. R. Quinn, Phys Rev. D 16, 6 (1977).
- 3. S. Weinberg Phys. Rev. 40, 4 (1978).
- F. Wilczek, Phys. Rev. 40, 5 (1978). 2020-06-08 Carl Rethmeier 4.

How are axions produced by the sun?

- One possibility in the proton-proton chain:
 - $p + p \rightarrow d + e^+ + \nu_e$ • $p + d \rightarrow {}^{3}He + \gamma (5.5 \text{ MeV})$

M-type transition

 \bullet

How are axions produced by the sun?

- One possibility in the proton-proton chain:
 - $p + p \rightarrow d + e^+ + \nu_e$ • $p + d \rightarrow {}^{3}He + \gamma (5.5 \text{ MeV}) \longleftarrow$ M-type transition • ...
- Axion could be produced in place of photon:
 - $p + d \rightarrow {}^{3}He + a (5.5 \text{ MeV})$

DEAP-3600

- Designed to look for WIMP dark matter
 - Made from very low radioactivity materials
- Acrylic vessel filled with over 3 tonnes of liquid argon
 - Surrounded by 255 Photo-Multiplier Tubes (PMTs)
- Scintillation light is detected by PMTs

Physics, 108, 1-23.

Axion interactions in DEAP-3600 produce EM events

Compton conversion

- Get 1 gamma and 1 electron, with 5.5 MeV total kinetic energy
- Inverse Primakov
 - Get 1 gamma with 5.5 MeV energy
- Axio-electric effect
 - Get 1 electron with 5.5 MeV kinetic energy
- Axion decay into 2 gammas
 - Get 2 gammas with 5.5 MeV total energy

Carl Rethmeier

Inverse Primakov

DEAP-3600 Signal Detection

Carl Rethmeier

DEAP-3600 Signal Detection

DEAP-3600 Signal Detection

Electron/Gamma Backgrounds

DEAP Collaboration (2019). Electromagnetic backgrounds and potassium-42 activity in the DEAP-3600 dark matter detector. *Physical Review D*, *100*(7), 072009.

Fit of electromagnetic backgrounds published

Fit ends just below 5 MeV.

Axion region of interest is at 5.5 MeV

Electron/Gamma Backgrounds

DEAP Collaboration (2019). Electromagnetic backgrounds and potassium-42 activity in the DEAP-3600 dark matter detector. *Physical Review D*, *100*(7), 072009.

Fit of electromagnetic backgrounds published

Fit ends just below 5 MeV.

Axion region of interest is at 5.5 MeV

2020-06-08

Simulations and Detector Response Function

- r₂ -> Poisson photon production, binomial photon counting, and afterpulsing
- r₃ -> electronic noise

High energy response calibrated at 4.4 MeV and Above

Carl Rethmeier

Source containing Am241 and Be9 (AmBe) generates neutrons and gammas

Complicated source geometry added to MC model

Calibration tubes

Binned-likelihood fit of simulated β/γ components to AmBe source simulation

From calibration to axion search fit...

- Fix response function parameters from calibration fits
- Try fitting on a toy dataset containing neutron-induced backgrounds and some axion events

Fit of β/γ components to background simulation for axion search

Carl Rethmeier

Summary

- A 5.5 MeV solar axion search in DEAP-3600 has exciting potential
 - Requires calibration of detector at high energy
 - Main background is neutron-induced gammas
- A MC-based model and response function is fit to the data to search for an axion signal
 - Detailed analysis of systematic uncertainties is underway
 - Results will be released as part of my PhD thesis and in an upcoming paper

