

The ACHINOS sensor in the NEWS-G Experiment

George Savvidis

CAP conference 2020

Low-Mass Dark Matter detection

Direct Method: WIMP interacts with the gas nuclei through scattering

Measure the recoil energy of the scattered nuclei

140 cm low activity copper sphere

SPC Principle of Operation

- Incoming particle ionizes the gas – Primary Ionization
- e- drift towards the anode at the center along the \vec{E} field lines
- Avalanche occurs Secondary Ionization
- Signal is produced and measured

Goal: WIMP detection at SNOLAB!

r_A = anode radius r_c = cathode radius

The \vec{E} field

\vec{E} field before correction

\vec{E} field after correction (umbrella)

4

The ACHINOS sensor

Multi-Anode ACHINOS Sensor

Single Anode Sensors

Sea Urchin = achinos in greek

\vec{E} field vs Gain

$$E(r) = \frac{V_0}{r^2} \frac{r_A r_C}{r_C - r_A} \approx \frac{V_0}{r^2} r_A$$

if $r_A \downarrow \Rightarrow$ gain \uparrow but $\vec{E} \downarrow$ at distance r from the center

Why do we need high gain?

Because for low-mass WIMP detection we have to go down up to single-electron detection $\sim 30 \ eV$

Use anode with very small radius and for high gain. But how to compensate for the weakening of the \vec{E} field?

Solution: multi-anode sensor "ACHINOS"

Single Anode Sensors with different radii

I. Giomataris et al. arXiv:2003.01068

- 11-ball ACHINOS sensor
- 1.7 mm diameter silicon balls
- High gain, capable to go up to single electron detection
- Strong \vec{E} field to collect primary e- far from the center

George Savvidis Original achinos paper: <u>https://inspirehep.net/literature/1613557</u>

Simulation of \vec{E} field for the ACHINOS sensor

Preliminary

Simulation: Tom Neep et al., University of Birmingham, UK, NEWS-G Collaboration

2-channel ACHINOS for NEWS-G Experiment

- Implementation of a 2-channel ACHINOS for NEWS-G at LSM summer 2019 first test
- The 2 channels are obtained by grouping the wires of the 5 and 6 balls together at sensor location (next slide)
- The 2-channel sensor allows for volume analysis of the events between the two hemispheres of the detector
- Implementation at SNOLAB in Spring 2020 Postponed due to COVID-19

2-channel ACHINOS for NEWS-G Experiment

Simulation: Tom Neep et al., University of Birmingham, UK, NEWS-G Collaboration

2-channel ACHINOS for NEWS-G Experiment: Cross Talk

en's

- Cross talk between the 2 ٠ channels
- Indications it is not electronic ٠ cross talk but an effect happening inside the detector

2-channel ACHINOS for NEWS-G Experiment

135 mbar pure CH4Ar37 source: 2.8keV photon2-channel ACHINOS sensor

Integral of Double Deconvolved Pulse(ADU) channel 1

40000

Future

- Disentangling various effects to extract relevant information for WIMP search and fiducial volume is object of current studies
- Develop 11-channel ACHINOS sensor
- Could allow for directional measurement of Dark Matter in large and low-pressure Spherical Proportional Counter

Thank you