

Laser calibration & electron drift property analysis for NEWS-G

Jean-Marie Coquillat CAP-ACP 2020

NEWS-G detector summary

cm Archeological lead

- Spherical proportional counter filled with gas
- Trying to detect low mass WIMPs

• Current data analysis from LSM runs of Ne and CH₄

• Installation ongoing in SNOLAB on covid break

Event detection

Animation by Philippe Gros

Drift time

- Drift time: Mean time for e⁻ to travel from surface of the sphere to the central anode
- Allows characterization of the detector, e.g. for simulations
- Measured with a laser using a photodetector and the photoelectric effect
- Laser used at 5 or 10Hz in all runs for more consistency

Calculation of Drift Time

Drift time =
$$\frac{\text{(Rise 10\% + Rise 25\% + Rise 75\% + Rise 90\%)}}{4} - \text{Start of photodetector pulse} + \Delta t$$

Where Δt is the time shift between the two channels (Time[ch. 2] – Time[ch. 1])

Calculation of Drift Time

Gaussian fit applied to the distribution to find the mean drift time and its uncertainty

Drift time results – Gas and laser current

- The drift time is longer with neon than methane.
- Higher laser current produces higher energy events resulting in a shorter drift time.

Neon: V = 1500 V, P = 1 bar

Methane: V=2030 V, P = 0.135 bar

Drift time results – Rate and radioactive source

 The rate of laser events can also reduce the mean drift time.

• So does adding traces of radioactive argon to the gas mixture.

Fluctuations in the drift time

• The drift time fluctuates a lot. Similar fluctuations are observed on the gain and total rate of events.

Alphas in the detector

"Space charge effect": Drift of ions slowly perturbate the electric field

These alphas cause the fluctuations observed on drift time, gain and rate.

Fluctuation shape

 Sudden drop of the drift time after an alpha, followed by a slow (>10s) exponential return to baseline

• Similar effect with the rate of events, but with a much faster return to baseline

Fluctuations effects

Clear correlation between the different fluctuations

Here is the time difference between big rate jumps / drift time drops and the most recent preceding alpha.

Problem:

A lot of seemingly "good events" created because of this phenomenon, similar to a WIMP single-electron event.

Solution: Cuts on alphas

- 5-second dead time cut
- Around 85% of the total time kept with all cuts

Proportion of kept events with alpha cut function for Argon-37 run

	Ampl<300	300 <ampl<2000< th=""><th>Ampl>2000</th></ampl<2000<>	Ampl>2000
Alpha only	0.788	0.932	0.951
Alpha+Drift	0.664	0.868	0.895
Alpha+Rate+Drift	0.597	0.842	0.873

Thank you!

- Q. Arnaud et al., First results from the NEWS-G direct dark matter search experiment at the LSM, Astroparticle Physics97(2018) 54-52.
- Q. Arnaud et al., Precision laser-based measurements of the single electron response of SPCs for the NEWS-G light dark matter search experiment, arXiv:1902.08960
- A. Dastgheibi-Fard & G. Gerbier, Development of Spherical Proportional Counter for light WIMP search within NEWS-G collaboration, arXiv:1904.01944