Bubbles and Neutrinos

Ken Clark
Queen's University and TRIUMF

Detecting Neutrinos

Lots of different kinds of detectors...

Cerenkov
Threshold @(MeV)

Radiochemical
Threshold @(hundreds keV)

Tracking
Threshold ©(Gev)

Different Neutrino Interaction

- Neutrinos can scatter elastically with an entire nucleus
 - Coherent Elastic Neutrino-Nucleus Scattering (CEvNS)
- Search for the nuclear recoil
- UPPER energy threshold of tens of MeV neutrinos for most nuclei

Look to our peers

- This is an issue dark matter detectors have been dealing with for years
- Many MANY ways to see that small energy deposit
- Trickiest part may be the background rejection...

Coherent Neutrino Scattering

I said we were looking for this

Coherent Neutrino Scattering

We're actually looking for this

Example Dark Matter Detector - PICO

- Small deposit of energy overcomes threshold in Gibbs potential
- This then results in vaporization production of bubble
- Note that threshold is controllable
 - At most thresholds, gammas not an issue

Example Dark Matter Detector - PICO

Revisit a bit of history

Phys. Rev. 102, 586 (1956)

- In 1956, Glaser made a xenon bubble chamber
 - No bubbles in pure xenon even at 1keV threshold with gamma source
 - Normal production in 98% xenon + 2% ethylene (scintillation completely quenched)
- Scintillation suppresses bubble nucleation (?)

The SBC Detector

- Roughly 10kg of Argon
- SiPMs used for scintillation detection
- Much of the internal detail modelled on PICO 500
- Only added challenge is to keep it cold

The SBC Detector

- Roughly 10kg of Argon
- SiPMs used for scintillation detection
- Much of the internal detail modelled on PICO 500
- Only added challenge is to keep it cold

Vacuum jacket

Ongoing work

Pressure vessel

SiPM testing

Queen's

A neutrino source

- Now need to find somewhere to produce these neutrinos
- Candidates:
 - Supernovae high flux pulse, little control on timing
 - Stopped pion sources controllable, but low flux
 - Reactors huge flux but no on/off control

Expected Reactor Rate

L.J. Flores, E. Peinado, UNAM

- SBC has investigated several reactor options
- With the projected threshold shown, could be a significant number of events
- Preliminary talks with Laguna Verde reactor in Mexico

What can we do?

- Improvement on statistics could be very important for future Ar dark matter experiments
- This process is also very dependent on $\sin^2\theta_W$, providing another way to constrain it
- This also means any non-standard interactions of neutrinos could be seen here...

... also we can look for dark matter

Multiple goals

- Having several goals means building several detectors
- First undergoing construction and commissioning at Fermilab, then to be used for CEvNS
- Second to be built at SNOLAB starting in 2021

The collaboration

- Canadian groups at Queen's, University of Alberta, TRIUMF, Université de Montréal
- US groups at Northwestern,
 Fermilab, IUSB, UCSB,
 Drexel, NEIU, PNNL
- Mexican group at UNAM

Conclusions

- The SBC collaboration will be investigating both CEvNS and dark matter
- Vibrant group, always looking for collaborators
- Look for us in the future!

