The SNQ experiment: current status and prospect

YI-HSUAN "CINDY" LIN

FOR THE SNO+ COLLABORATION

CAP 2020 CONGRESS - JUNE 8, 2020

Vale Creighton Mine (Lively, Ontario)

Zooming into the acrylic vessel (AV)

Detection medium (Water/Scintillator)

6 m radius

Vale Creighton Mine (Lively, Ontario)

> 2km underground (5.9 km.w.e.)

Acrylic vessel (AV)

~9300 photomultiplier tubes (PMTs)

- Mounted on support structure
- ~54% effective photocoverage

Upgraded **data acquisition system** to improve data readout

Water shielding

- 1.7 kt between AV and PMT support structure
 -> reduce background from PMT materials
- 5.3 kt between PMT support structure and cavity
 -> reduce background from rock wall

Sealed **cover gas** to reduce background from headspace volume

*Plush figure is from The Particle Zoo

- ~900 t water
- Detector calibration
- External background measurements
- Measure the ⁸B solar neutrino flux
- Search for nucleon decay to invisible modes
- Measure neutron detection efficiency + thermal neutron-proton capture cross section

Scintillator (linear alkylbenzene, LAB) + PPO wavelength shifter Phase

Scintillator + PPO + Tellurium Phase

¹Super-Kamiokande Collaboration
 ²https://phys.org/news/2005-07-geoneutrinos-kamland.html
 ³ https://nuclearsafety.gc.ca/
 ⁴NASA, ESA, J. Hester, A. Loll (ASU)

Measurement of the $^8\!B$ solar neutrino flux in $SNO+$ with very low backgrounds
Consistent with matter
enhanced neutrino
oscillation & other solar
A measurement of the "B solar neutrino flux has been made using a 69.21 neutrino flux ater commissioning phase. At energies ate phase at the solar
measurements, which is 1.03 ^{+0.24} events / kt - day. Also using out a below this
Phys. Rev. D 99, 012012 (2019)

canne the 2 magnetic of standard states and the magnetized $\Delta = 1000$ Å and the rest induced states of the states of the $\Delta = 1000$ Å to the rest of the states of the st

Yi-Hsuan "Cindy" Lin

Scintillator (linear alkylbenzene, LAB) + PPO wavelength shifter Phase

- ~780 t of liquid scintillator; lower physics threshold
- Detector calibration
- Internal background measurements
- External background validation
- Low energy solar neutrinos (pep, CNO)
- Antineutrino detection reactor & geo
- Supernova neutrinos physics

Scintillator + PPO + Tellurium Phase

¹Super-Kamiokande Collaboration
 ²https://phys.org/news/2005-07-geoneutrinos-kamland.html
 ³ https://nuclearsafety.gc.ca/
 ⁴NASA, ESA, J. Hester, A. Loll (ASU)

Scintillator (LAB) + PPO Phase

Scintillator + PPO + Tellurium Phase

♦ Neutrinoless double beta decay with ¹³⁰Te

- Benefits of ¹³⁰Te:
 - Good Q-value (2.5 MeV)
 - High natural abundance (34%)
- $\circ~$ Observation of $0\nu\beta\beta$
 - Proves neutrinos are Majorana particles
 - Demonstrates lepton number violation

Double beta decay (2vββ) lifetime measurement in ¹³⁰Te

Neutrinoless double beta decay (0vββ) search in ¹³⁰Te

¹Super-Kamiokande Collaboration
 ²https://phys.org/news/2005-07-geoneutrinos-kamland.html
 ³ https://nuclearsafety.gc.ca/
 ⁴NASA, ESA, J. Hester, A. Loll (ASU)

Scintillator (LAB) + PPO Phase

Scintillator + PPO + Tellurium Phase

✤Neutrinoless double beta decay with ¹³⁰Te

- Benefits of ¹³⁰Te:
 - Good Q-value (2.5 MeV)
 - High natural abundance (34%)
- Observation of 0vββ
 - Proves neutrinos are Majorana particles
 - Demonstrates lepton number violation

¹Super-Kamiokande Collaboration ²https://phys.org/news/2005-07-geoneutrinos-kamland.html ³ https://nuclearsafety.gc.ca/ ⁴NASA, ESA, J. Hester, A. Loll (ASU)

Counts/Year: 9.47 Te UG storage + process plant Cosmogenic $^{8}B \nu ES$ measure in $2\nu\beta\beta$ measured Te phase (α, n) measured External Internal U chain Internal Th chain A 5-year counting analysis yields T^{0v}_{1/2} > 2.1×10²⁶ years (90% CL) measure in scint phase & Te phase

Te-loading can be increased by 4-8x

Antineutrinos: reactor and geo

Detect reactor, geo-, and supernova antineutrinos with **Inverse Beta Decay** (IBD)

Antineutrinos: reactor and geo

Yi-Hsuan "Cindy" Lin

Antineutrinos: reactor and geo

Current detector status

Scintillator+PPO Phase

- Scintillator+PPO fill on-going
 - See Caroline Deluce's talk:
 - "Towards Liquid Scintillator Phase of the SNO+ Neutrino Detector"
- Currently filled with 365t of LAB+PPO
- Scintillator background analyses on-going

Scintillator+PPO + Tellurium Phase

• Tellurium process plants in commissioning stage

Current water phase analysis status

Water Phase

- ✓ Physics papers with ultra-low background water data
 - Measured 8B solar neutrino flux with ultra-low background data Phys. Rev. D 99, 012012 (2019)
 - Set world-leading limit on invisible modes of proton decay Phys. Rev. D 99, 032008 (2019)
- Measure neutron detection efficiency + thermal neutron-proton capture cross section
- Measured external background, consistent with expectations

- Analysis ongoing and more papers in preparation
- Update existing analyses with
 - Higher statistics: additional 190.33 days
 - Completed optical calibration
 - Lower radon background

