Structure and Properties of Exfoliated MoS₂-Polyaniline Nanocomposites Erin Lyle², <u>Douglas C. Dahn¹</u>, Cody McAllister², and Rabin Bissessur² Departments of ¹ Physics, and ² Chemistry, UPEI CAP 2018 Funding: UPEI and NSERC ## Nanocomposites Ongoing UPEI project investigating nanocomposites of layered materials and polymers # 2H-MoS₂ - Normal bulk MoS₂. - Semiconductor with 1.2 eV indirect gap # 1T-MoS₂ - Equilibrium structure for bulk Li_xMoS₂ - 2H to 1T transition driven by electron transfer to MoS₂ - Metastable after Li removed - Metallic #### Discovery of 1T structure in Li_xMoS₂ Can. J. Phys. **61** (1983) 76 ## Structural destabilization induced by lithium intercalation in MoS₂ and related compounds M. A. PY AND R. R. HAERING Department of Physics, University of British Columbia, Vancouver, B.C., Canada V6T 2A6 Received July 19, 1982 2H-MoS₂ is a semiconductor with a hexagonal layered structure. Each Mo atom is prismatically coordinated by six S atoms. Our *in situ* X-ray diffraction results indicate that, upon intercalation, the MoS₂ host lattice undergoes a first order phase transition in which the Mo coordination changes from trigonal prismatic to octahedral (1T structure). The driving mechanism for this structural change is discussed in terms of a charge transfer from the lithium to the host and in terms of the respective energy-band diagrams for 2H and 1T polytypes. Intercalation-induced reversals in the relative stability of trigonal-prismatic and octahedral phases may also be expected in other semiconducting hosts. ## "Graphene-analogous" single-layer MoS₂ - 2H-type single layer has 1.9 eV direct band gap - Potential applications in electronics, optoelectronics, sensors, photoluminescence, catalysis, nanotubes, energy storage... #### Produced by, for example: - Mechanical exfoliation of bulk 2H-MoS₂ - Exfoliation by lithium intercalation produces <u>1T phase</u>² - Reaction of molybdic acid and thiourea produces 2H-MoS₂ in exfoliated state¹ [1] H.S.S Ramakrishna Matte et al. (2010) Angewandte Chemie **122**, 4153-4156. [2] D. Yang et al. (1991) Phys. Rev. B **43**, 12053. (Bob Frindt group, SFU) ## Conducting polymer polyaniline (PANI) Various forms. Doping of the emeraldine salt form required to form mobile charged polarons and bipolarons. • Electrical conductivity $\sigma \sim 10^{-1}$ to 10^3 S/cm¹ (doping, disorder, chain length....) 1. Kaiser, Advanced Materials 13 (2001) 927 # MoS₂-PANI Nanocomposites Worldwide research activity on related materials and applications, e.g.: - Supercapacitors (specific capacitance 400 600 F/g)¹ - Li ion batteries - Electrochemical sensors... Most literature on layered NCs, 1T-MoS₂-PANI, large MoS₂:PANI ratios, and few-layer 2H-MoS₂-PANI This work – Exfoliated single-layer 2H-MoS₂-PANI NC, small MoS₂:PANI ratios 1. Ansari et al, J Colloid and Interface Science 504 (2017) 276; Gopalakrishnan et al, Nano Energy 12 (2015) 52; Zhao et al, Chemical Engineering Journal 330 (2017) 462 ## Synthesis - 2H-type exfoliated MoS₂ was prepared directly by combining molybdic acid with an excess of thiourea. Mixture heated at 500°C for 3 hours under nitrogen atmosphere. - Nanocomposites synthesized using *in-situ* polymerization of the aniline monomer in the presence of exfoliated MoS₂. (MoS₂ added to a mixture of aniline and 1M HCl at 0° C, followed by addition of ammonium persulfate, vacuum filtration and isolation of the product.) - NCs containing 1% to 50% MoS₂ by weight of PANI - Two syntheses ("trials") of each ## Powder XRD of MoS₂ ### SEM #### 1% MoS₂-PANI trial 1 #### 20% MoS₂-PANI trial 1 #### TEM • No evidence of MoS₂ layers restacking - Exfoliated NC PANI 15% MoS₂-PANI 20% MoS₂-PANI HV=80.0kV Direct Mag: 120000x AMT Camera System 15 0 MoS2-PANI.e.tif 15 0 MoS2-PANI Trial 1 Print Mag: 118000x # 7.0 in 14:38 11/29/16 20 0 MoS2-PANI.f.tif 20 0 MoS2-PANI Trial I Print Mag: 78800x 87.0 in 14:50 11/29/16 HV-80.0kV Direct Mag: 80000x AMT Camera System Print Mag: 118000x @ 7.0 in 14:05 11/29/16 #### Room – Temperature Conductivity - van der Pauw method on pressed pellets in lab air - Some samples attracted visible water droplets these measured in dry air desiccator - No detectable conductivity in exfoliated MoS₂ ## Variable-Temperature Conductivity - In vacuum - 50 300K - Exposure to vacuum reduces room temperature conductivity. (Alters PANI doping?) - Lines are fits: next slide... ### Fits to Heterogeneous Conduction Model • For <u>lower-conductivity polymers</u>, conductivity σ often well-described by¹ $$\rho = \sigma^{-1} = f_c \rho_m \exp\left(-\frac{T_m}{T}\right) + f_n \rho_0 \exp\left[\left(\frac{T_0}{T}\right)^{\gamma}\right]$$ - First term: Good conduction in ordered regions (quasi-one-dimensional metal). Resistance often small. Not needed to fit our data. - Second term: Hopping-type conduction through disordered regions. - $\gamma = 0.25$: Mott's variable-range hopping (VRH) model in 3D. - $\gamma = 0.5$: quasi-1D VRH (or 3D hopping with significant e-e interaction, or tunneling with charging effects...) - $\gamma \approx 0.5$ determined from our fits to PANI and NC (0.4 to 0.6). - 1. Kaiser, Advanced Materials 13 (2001) 927 and references therein #### Seebeck coefficient - Room temp, pellet between polished Cu electrodes, one heated - Pellets attracting water or corroding Cu not included - PANI usually positive in literature, but sometimes negative #### Discussion - Nanocomposites with 1 to 15 % MoS₂ sometimes have greater conductivity than PANI, much greater than 2H-MoS₂ - A possible explanation: MoS₂ in some nanocomposites is in 1T form (metallic). - Alternatively, presence of MoS₂ during polymerization could influence order or doping level of PANI, improving its conductivity. - Seebeck: n-type metallic behaviour, same conduction mechanism for PANI and NC - Variable-T: consistent with an inhomogeneous conduction model #### Future work - Attempt to determine1T or 2H structure in the nanocomposite Raman spectroscopy? - Explore how PANI and NC properties depend on synthesis conditions - Related NCs - Applications? #### **QUESTIONS?**