

Escherichia coli's RfaH studied by all-atom Monte Carlo simulation

Aina Adekunle

Department of Physics and Physical Oceanography Memorial University

2018 CAP Congress, Dalhousie University Halifax, Nova Scotia

June 10 – June 15, 2018

Outline

- 1. Background to RfaH
- 2. Previous studies
- 3. Computational approach
- 4. Results
- 5. Full-length RfaH
- 6. Isolated C-terminal domain
- 7. Conclusion

Motivation

Some proteins can switch fold

- 1. Background to RfaH
- 2. Previous studies
- 3. Computational approach
- 4. Results
- 5. Full-length RfaH
- 6. Isolated C-terminal domain
- 7. Conclusion

RfaH

- Naturally occurring protein in *E. coli*
- 2 interfacing domains (CTD & NTD)
- Dual functional: Regulates transcription and enhances translation
- CTD shown experimentally to be able to switch fold

[Burmann et al., 2012]

- 1. Background to RfaH ✓
- 2. Previous studies
- 3. Computational approach
- 4. Results
- 5. Full-length RfaH
- 6. Isolated C-terminal domain
- 7. Conclusion

Previous computational studies

- Some computational studies using molecular dynamics including atomistic and coarse-grained models
- Common observation: NTD is more stable than CTD

- 1. Background to RfaH ✓
- 2. Previous studies 🗸
- 3. Computational approach
- 4. Results
- 5. Full-length RfaH
- 6. Isolated C-terminal domain
- 7. Conclusion

Computational study of RfaH

- We employed atomistic Monte Carlo simulations
- Software: PROFASI with a simplified physics-based force field
- Investigated stability properties of full protein, αCTD and βCTD
- Simulations started from experimental structures
- Monitored RMSD and secondary structural content

1. Background to RfaH ✓

- 2. Previous studies 🗸
- 3. Computational approach 🗸
- 4. Results
- 5. Full-length RfaH
- 6. Isolated C-terminal domain
- 7. Conclusion

- NTD is highly stable
- CTD is less stable
- Both helices in CTD have similar stability

Results: Full-length RfaH

Results: Isolated CTD

- 1. Background to RfaH ✓
- 2. Previous studies 🗸
- 3. Computational approach 🗸
- 4. Results
- 5. Full-length RfaH 🗸
- 6. Isolated C-terminal domain
- 7. Conclusion

- Helix 2 becomes less stable
- Helix 1 completely losses its helicity
- Inter-domain interactions stabilize CTD

- 1. Background to RfaH ✓
- 2. Previous studies 🗸
- 3. Computational approach 🗸
- 4. Results
- 5. Full-length RfaH 🗸
- 6. Isolated C-terminal domain
- 7. Conclusion

Results: Isolated CTD

- β CTD is more stable than α CTD
- all- α to all- β fold switch is thermodynamically favored

1. Background to RfaH ✓

- 2. Previous studies 🗸
- 3. Computational approach 🗸
- 4. Results ✓
- 5. Full-length RfaH ✓
- 6. Isolated C-terminal domain ✓
- 7. Conclusion

Conclusion

- Employed all-atom Monte Carlo simulation to investigate both full-length RfaH and isolated CTD
- Simulation able to identify fold switching region in this protein

The relatively low stability of α CTD indicates that it may be primed to switch into the β CTD structural form upon disruption of the stabilizing interface with the NTD.

Future work

PROFASI fails! what next?

Acknowledgements

- Dr. Stefan Wallin
- Natural Sciences and Research Council of Canada
- Memorial University
- Canadian Association of Physicists

