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6.3mm ∅
Si sensor

60cm ∅
Cu vessel



NEWS-G 2

Particle interactions ionize
gas molecules

These primary electrons
induce a charge
avalanche at the

anode/sensor

Large gain →
Low energy threshold



Gaseous Detectors 3

Primary ionization is a stochastic process

(For neon: Wγ = 36eV/pair)
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Primary ionization is a stochastic process

Ugo Fano

The dispersion of this
process is described by

the Fano Factor:

For noble gases, F ~ 0.2

Gaseous Detectors



5Why should we care?

Energy
resolution can
have a
significant effect
on low mass
dark matter
sensitivity!

Hypothetical neon
experiment with a

100eV threshold and
Gaussian energy

resolution



6Why should we care?

Example: Recoil energy spectrum of a
1 GeV WIMP in Neon

Energy
threshold

Because the
WIMP recoil
spectrum is
asymmetric,
sometimes
having a poor
energy resolution
can improve
sensitivity to
WIMPs!



6Why should we care?

Example: Recoil energy spectrum of a
1 GeV WIMP in Neon

Energy
threshold

How do we
model this at
the level of

primary
ionization?



The Fano Factor

To account for the Fano Factor in simulations, we need
a probability distribution P(x|μ,F) that:
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The Fano Factor

To account for the Fano Factor in simulations, we need
a probability distribution P(x|μ,F) that:

Is discrete

Defined for non-integer values of μ ≥ 0

Mean and variance controlled separately

Not Gaussian,
Gamma

Not Discrete Gamma
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The Fano Factor

To account for the Fano Factor in simulations, we need
a probability distribution P(x|μ,F) that:

Is discrete

Defined for non-integer values of μ ≥ 0

Mean and variance controlled separately

Works for F < 1 (down to F = 0.1)

Not Gaussian,
Gamma

Not Discrete Gamma

Not Generalized Poisson,
Negative Binomial, Double
Binomial

7

Not Poisson,
Binomial



COM-PoissonCOM-Poisson

We found the COnway Maxwell - Poisson (COM-Poisson)
distribution!
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COM-PoissonCOM-Poisson

The mean and variance are:
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We found the COnway Maxwell - Poisson (COM-Poisson)
distribution!



COM-PoissonCOM-Poisson 9

Used for linguistics, economics, marketing...
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It can model under-dispersion (F < 1) when ν > 1



The problem...

COM-Poisson 11

   We have:   We want:
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The problem...

COM-Poisson

???
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Using COM-Poisson

Empirically, we know F < 1 (sub-
Poissonian dispersion)
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F > 1



Using COM-Poisson

F > 1 At high μ/F, there are
asymptotic expressions

we can use!

Solves this problem:

Accurate to ≤
0.01%

Asymptotic
regime
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Using COM-Poisson

Fundamental lower
limit of F are the

“Bernoulli modes”

Asymptotic
regime

In this regime your distribution is a choice between two integers

This parameter space is inaccessible to any discrete distribution

14

F > 1



Using COM-Poisson

...so what about
this region of

parameter space?

Asymptotic
regime

Bernoulli modes

14

F > 1



For a given λ and ν:

1. Calculate relative difference
between the mean you want and the

mean you get

(Example for μ = 0.5, F = 0.6)Minimization Algorithm

|μi
 - μ|/μ
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For a given λ and ν:

1. Calculate relative difference
between the mean you want and the

mean you get

2. Calculate relative difference
between the variance you want and

the variance you get

(Example for μ = 0.5, F = 0.6)Minimization Algorithm

|σi
2 - σ2|/σ2

|μi
 - μ|/μ
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(Example for μ = 0.5, F = 0.6)Minimization Algorithm

Take the weighted average of
these two to combine them

into one quantity...

|σi
2 - σ2|/σ2

|μi
 - μ|/μ
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Minimization Algorithm

|σi
2 - σ2|/σ2

|μi
 - μ|/μ ...and minimize it!

(Example for μ = 0.5, F = 0.6) 15



The Tables

The minimization algorithm is
relatively slow

We have run it for a large range
of values of μ/F and stored the
results in look-up tables
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Impact of F can be understood by

determining probability of “gaining” or

“losing” events near energy threshold

Impact of the Fano Factor 17



Impact of the Fano Factor 18

Now we have a tool to simulate the effect of primary
ionization statistics!

Hypothetical
neon
experiment, 1e-
threshold

COM-Poisson +
Gaussian (σ =

10eV) energy
resolution



Conclusions

Including the Fano Factor in
simulations of primary ionization is
very important!

Finding a mathematical tool to do so
is non-trivial

The COM-Poisson distribution is a
possible solution, albeit not a very
user friendly one

We plan to make these look-up
tables and code publicly available!

19



Thank You!
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NEWS-G

Key attributes:

Simple design

Single sensor

Gas easily changeable

1e- energy threshold

Low A detector medium
→ Good for low mass
WIMPs



(1) Primary Ionization

Mean energy to create one pair in Ne :

(2) Drift of charges

Typical drift time surface → sensor :   ~ 500
µs

(3) Avalanche of secondary e-/ion pairs

Amplification of signal through Townsend
avalanche

(4) Signal formation

Current induced by the ions drifting away
from anode

(5) Signal readout

Induced current integrated by a charge
sensitive pre-amplifier  and digitized at 2.08

MHz

(5)

NEWS-G







Bernoulli Modes

You can’t always get the
mean and variance you
want:

With a very small
variance you will have
counts in only two bins

i.e. if you have a mean of
0.5 and variance of 0.25
you will have equal
counts in the 0-bin and
1-bin

...In fact in this case you
can’t have a variance of
less than 0.25



Bernoulli Modes

You can’t always get the
mean and variance you
want:

If you change the mean
slightly (larger or smaller),
you can have a smaller
variance but it is still
restricted

The minimum variance
you can have follows a
parabola:

σ2 = μ(1 - μ)



You can’t always get the
mean and variance you
want:

The same argument
applies if you have a
mean between 1 and 2...

Bernoulli Modes
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Bernoulli Modes

To prove that this is true for
COM-Poisson, take a grid of
points in λ and ν,

Then map those points to
the mean and variance
plane
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Bernoulli Modes

To prove that this is true for
COM-Poisson, take a grid of
points in λ and ν,

Then map those points to
the mean and variance
plane

The Bernoulli modes appear!

You cannot go into this
forbidden parameter space!

Bernoulli Modes

14





Not Binomial



Not Binomial

Possible F with Binomial Distribution

Because n is not
continuous, only
certain values of
F are possible
for a given μ

F is known to
vary only slightly
with energy, so
this is not an
appropriate
model



Asymptotic Regime

At larger values of mean, there is an asymptotic formula that gives us a closed form
expression for the mean and variance! No need to use the minimization algorithm here!



Asymptotic Regime

Nominally this
approximation is valid

when:

For us, it is valid to
accuracy of 10-4 for all F

above a μ of 20

Accuracy of asymptotic expression



Design of Table

The goal is to guarantee accuracy
to within a given distance of the
Bernoulli modes

We linearly interpolate points, so
we have to guarantee that linear
interpolation is good to given
distance from Bernoulli modes

Therefore we have to have some
points within given distance of
Bernoulli modes

Table point density such that each
time a F-line crosses a Bernoulli
mode, it is bounded by points
within D = 0.1% of Bernoulli mode

If any    within Bernoulli mode
and      not, then “point
within D of Bernoulli mode”



Minimization Algorithm

1. For a given mean/F define an initial box λ/ν
(based on asymptotic approximation and magic)

2. Perform a grid search to find min value of X:

3. Perform optimization with minima of grid
search as initial guess, smaller box

4. If not within tolerance (0.001 for mean and
variance), try another grid search in smaller box
and optimization in even smaller box

5. If this still doesn’t work, repeat steps 1-4 for
slightly perturbed values up to N (~25) times,
keep best result

Example with μ=1, F=0.5

Accuracy achieved in this case is
10-6 and 10-5



What does it look like?





How well does it work?
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