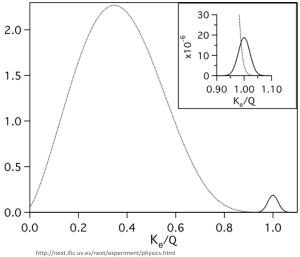
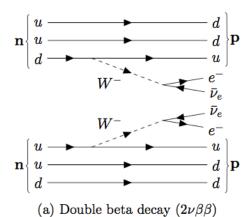
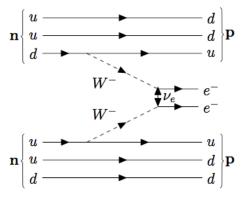

Scintillation/Cherenkov Separation in SNO+

Liz Fletcher
CAP Congress
June 13, 2018

SNO+ Overview

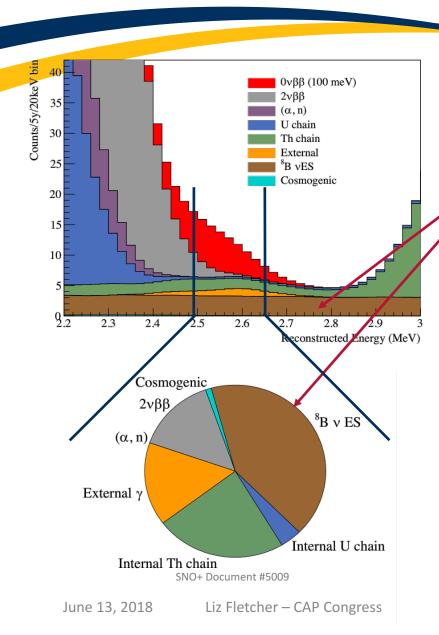

- 780 tonnes LAB/PPO in 12m diameter acrylic vessel
- Surrounded by ~9400 PMTs
- Loaded with ~1300 kg of ¹³⁰Te
- Hope to observe neutrinoless double beta decay

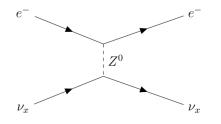

Neutrinoless Double Beta Decay

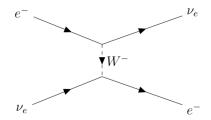


- If neutrinos are Majorana, neutrinoless double beta decay may be observed
- Extremely long half life $T_{1/2} > 10^{25}y$
- Entire decay energy is taken away by electrons, no neutrinos emitted

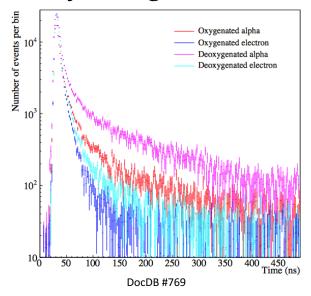
Liz Fletcher - CAP Congress



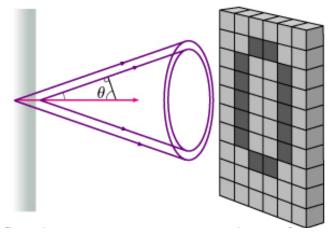

(b) Neutrinoless double beta decay $(0\nu\beta\beta)$


Solar Neutrinos as Background

- Main background of SNO+
- Solar neutrinos interact and produce electron signals in the detector
- These look similar to DBD electron signals



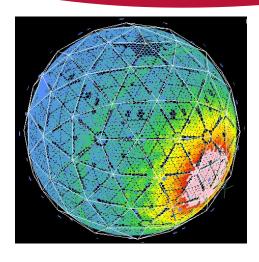
Scintillation vs Cherenkov Light

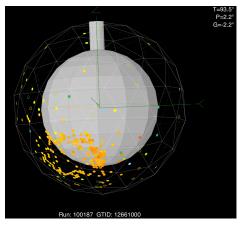

Scintillation

- Emitted isotropically around electron
- Delayed light emission

Cherenkov

- Emitted in cone ahead of electron
- Prompt light emission




http://www.masteringphysicssolutions.net/wp-content/uploads/2013/03/MP_Ch22_Q15_1.jpg

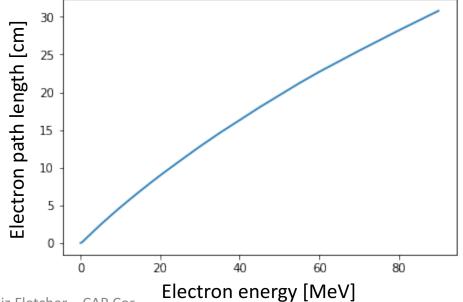
Cherenkov/Scintillation Separation

- Cherenkov light is directional
- So if we can separate
 Cherenkov from
 scintillation, might be able
 to reconstruct direction of
 neutrinos
- Correlating this with the Sun's direction allows the solar neutrino background to be reduced

Motivation

- Experiments have shown it is possible to separate scintillation and Cherenkov
 - Separation of cosmic muon light in LAB (Li et al. 2015)
 - CHESS experiment reported ~70% efficiency for identifying Cherenkov photons in LAB with 2g/L PPO (Caravaca et al. 2016)
- SNO+ collaborators have shown the same in simulations
 - RAT seems to indicate that we can separate scintillation from Cherenkov (Mottram 2014)
 - Separate simulation using GEANT4 was able to reconstruct positions of electrons in centre of liquid scintillator detector (Aberle et al. 2014)
- Other large liquid scintillator experiments don't use this technique... why?

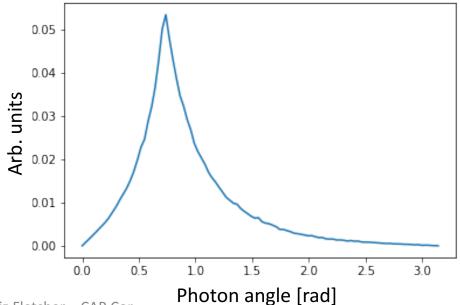
Monte Carlo Simulation



- Simulate detector as sphere of LAB+PPO tiled with PMTs at surface
- Ignoring: AV, neck, PSUP
- Physics processes mainly based on RAT, GEANT4
- Very fast!
- Allows for easy modelling and changing of fundamental aspects of the problem

Electron Physics

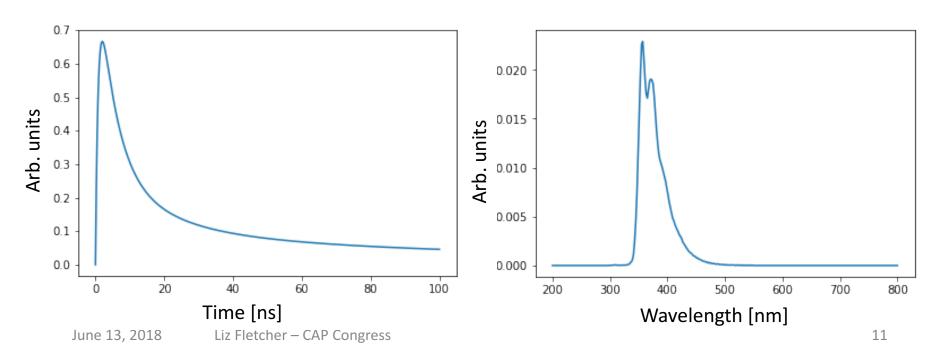
- Electron launching and stepping
 - CSDA step length
 - No explicit multiple scattering
- Photons distributed uniformly along electron track



Cherenkov Physics

- Cherenkov photons distributed with angular distribution below relative to electron direction to account for multiple scattering
- Cherenkov photons emitted uniformly in azimuth

Emitted promptly (no delay)



June 13, 2018

Scintillation Physics

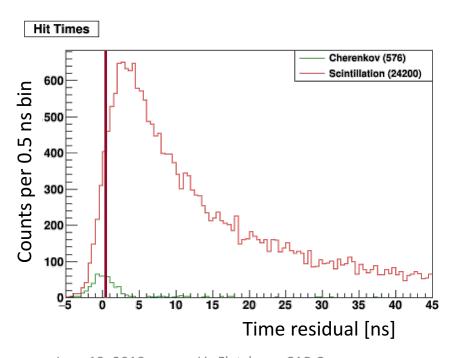
- Uses measured scintillator cocktail time distribution, and measured emission spectrum
- Scintillation photons emitted isotropically about electron path

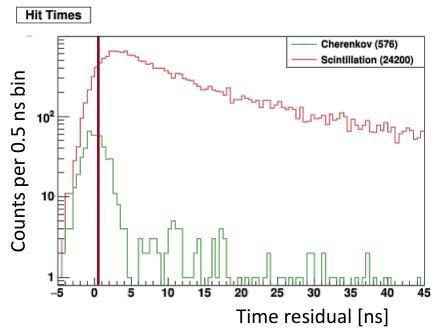
Photon Physics

12

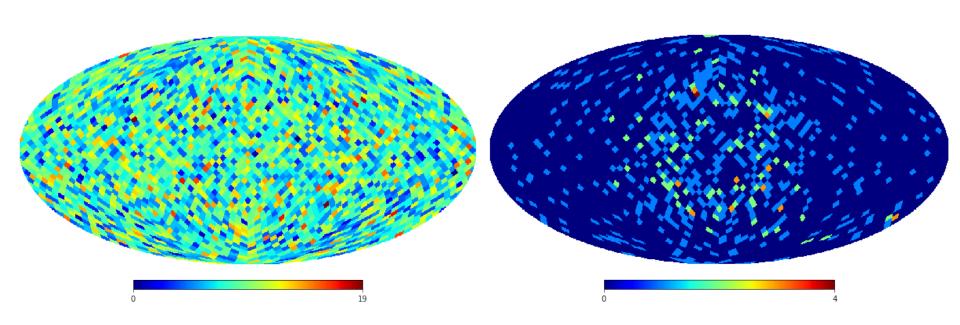
- Photon step length calculated using inverse distribution method
- Check to see if step reaches boundary
 - If so, detected
 - If not, determine if photon was scattered or absorbed
 - If scattered, step again
 - If absorbed, see if photon reemitted
 - If reemitted, step again
- If photon is detected, PMT timing resolution added
- All photons that reach the boundary are considered detected

Fundamental Factors to Study




- Pixelization
 - Somewhat analogous to PMT coverage
- Scintillation timing
 - Slow scintillators can help to separate Cherenkov and scintillation distributions
- PMT time resolution
 - The better the resolution, the more separable the distributions

Timing


- First few ns are most Cherenkov-rich
- So cutting on first few ns helps to pick out Cherenkov-rich hits

Timing

2.5 MeV event at (0,0,0) in (1,0,0) direction Left: no time cut Right: t<0.5ns

Pixelization

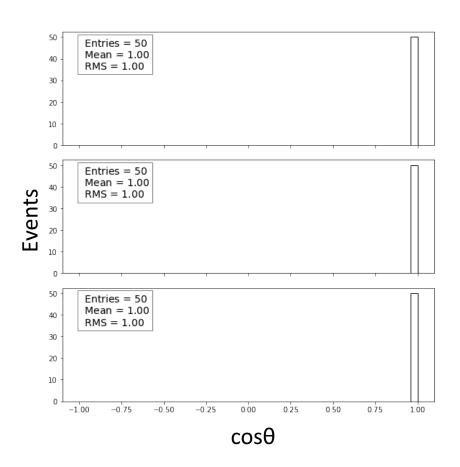
16

- Found HEALPix, software from for CMB analysis¹
 - Hierarchical, Equal Area, and iso-Latitude Pixelation
- Pixelization scheme for data on the sphere
- Also a few analysis tools (spherical harmonics, power spectra, etc)
- Each generated hit is binned into a pixel

¹K.M. Gorski et al., 2005, Ap.J., 622, p.759

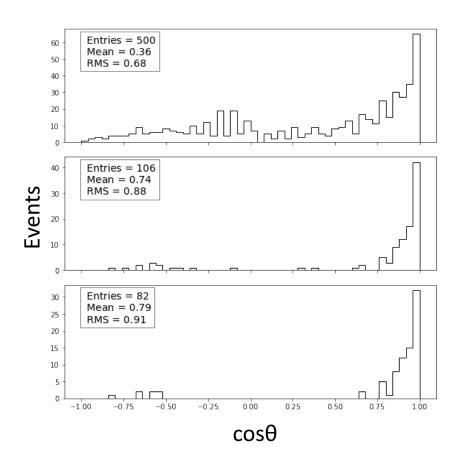
Circle Fitting

17


- HEALPix has a function to find pixels inside disk defined by a vector and an angle
- Use this to find ring at Cherenkov angle $\pm 5^{\circ}$
- Count number of hits inside disk
- Repeat with each pixel as centre
- Ring with max number of hits is fitted direction

Circle Fitting

18

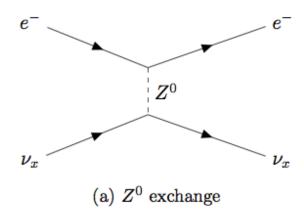

- 50 2.5MeV electrons launched at (0,0,0) with random directions
- Time cut of t < 0.5 ns
- Cut out events with number of ring hits < 60
- 100% of events pass both cuts
- 100% have accurate reconstructed position

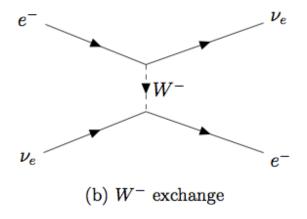
Circle Fitting

- 500 2.5MeV electrons, random positions and (1,0,0) direction
- Time cut of t < 0.5 ns
- Fiducial volume cut of r < 3500 mm
- Cut out events with number of ring hits < 60
- 21% of events pass FV cut, 16% pass hits cut
- $83\% \cos\theta >= 0.8$, $67\% \cos\theta >= 0.9$

Next Steps...

- Look at dependence on energy, PMT quantum efficiency, PMT timing, pixel number/coverage
- Look at different scintillators e.g. slow fluors
- Compare to simulation results from SNO+ RAT




Questions?

SNO+ Signal

- Neutrinos scatter elastically off of electrons in the scintillator
- Then electrons interact with scintillator to produce light – scintillation and Cherenkov
- Same electron interactions as with electrons produced via $0\nu\beta\beta$ and $2\nu\beta\beta$

22

Is it Actually Possible?

- Seems possible theoretically, but no scintillator experiment has been able to do so in practice
- Is there something that makes SNO+ "special"?

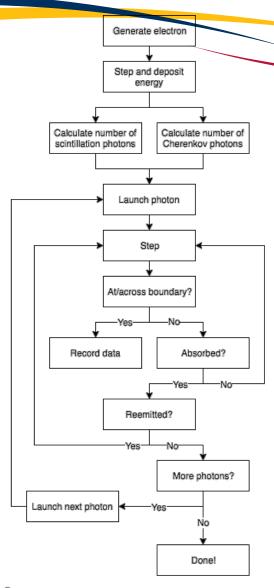
Motivation

- Experiments have shown it is possible to separate scintillation and Cherenkov
 - Separation of cosmic muon light in LAB (Li et al. 2015)
 - CHESS experiment reported ~70% efficiency for identifying Cherenkov photons in LAB with 2g/L PPO (Caravaca et al. 2016)
- SNO+ collaborators have shown the same in simulations
 - RAT seems to indicate that we can separate scintillation from Cherenkov (Mottram 2014)
 - Separate simulation using GEANT4 was able to reconstruct positions of electrons in centre of liquid scintillator detector (Aberle et al. 2014)
- Other large liquid scintillator experiments don't use this technique... why?

LSND/MiniBooNE

LSND

- Cylindrical detector using 167 tons of mineral oil and 0.031 g/l of b-PBD organic scintillator
- Mainly used Cherenkov/scintillation for particle identification
- Also reconstruction of vertex and angle


Athanassopoulos, C. et al. (1997). The liquid scintillator neutrino detector and LAMPF neutrino source. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 388(1–2), 149–172. https://doi.org/10.1016/s0168-9002(96)01155-2

MiniBooNE

- 12m diameter mineral oil Cherenkov detector
- Scintillation time constants on the order of ~20ns

MC

Electron Launching

27

- User can input starting position/direction or have them generated randomly
- Inputted or random starting energy
- Electron path length calculated from CSDA distribution

Scintillation Generator

Mean number of scintillation photons:

$$N = Y * dE$$

- Y measured to be 11900 photons/MeV (Kaptanoglu et al. 2016)
- Then actual number gets calculated from a Poisson distribution
- Energy drawn for each photon from scintillation spectrum, then position chosen isotropically and stepped
- Delay time for each photon is chosen from hyperexponential distribution shown earlier

Cherenkov Generator

Cherenkov angle is

$$\cos\theta = \frac{1}{n\beta}$$

- Given angular distribution to account for multiple scattering
- Distributed uniformly in azimuthal angle
- Photons emitted per unit length:

$$\frac{dE}{ds} = 370q^2 \left[\epsilon_{max} - \epsilon_{min} - \frac{1}{\beta^2} \int_{\epsilon_{min}}^{\epsilon_{max}} \frac{d\epsilon}{n^2(\epsilon)} \right] \text{(GEANT, 2015)}$$

Photon Propagation

- Photons propagated using the inverse distribution method
- Step size is:

$$s = \frac{ln\xi}{\frac{1}{L_s} + \frac{1}{L_{abs}}}$$

- Then calculate if this goes outside detector radius
- Then calculate if photon is scattered

$$p_S = \frac{L_S}{L_S + L_{abs}}$$

- If scattered, given new direction
- If absorbed, determine which component absorbed and whether reemitted given by comparing random number to reemission probability (0.59 for LAB and 0.8 for PPO)

Photon Propagation cont'd

- If reemitted, photon given new isotropic direction and energy chosen from reemission spectrum of material
- All numbers used in this are taken directly from RAT

REFERENCES

- C. Aberle, A. Elagin, H.J. Frisch, M. Wetstein, L. Winslow. Measuring directionality in double-beta decay and neutrino interactions with kiloton-scale scintillation detectors. 31 Jan 2014. arXiv:1307.5813
- J. Caravaca, F.B. Descamps, B.J. Land, M. Yeh and G.D. Orebi Gann. Cherenkov and Scintillation Light Separation in Organic Liquid Scintillators. 16 Oct 2016. arXiv:1610.02011
- GEANT4 10.2 Physics Reference Manual. 4 Dec 2015. http://geant4.web.cern.ch/geant4/ UserDocumentation/UsersGuides/PhysicsReferenceManual/fo/PhysicsReferenceManual.pdf
- M. Li, Z. Guo, M. Yeh, Z. Wang, S. Chen. Separation of Scintillation and Cherenkov Lights in Linear Alkyl Benzene. 30 Nov 2015. arXiv:1511.09339
- M. Mottram. Survival of Cherenkov photons in the scintillator phase of SNO+ and implications for direction reconstruction. 30 Jan 2015. SNO+ Document #2906
- K.M. Gorski et al., 2005, Ap.J., 622, p.759