

The ultra-cold neutron facility at TRIUMF

Florian Kuchler for the TUCAN collaboration

→ TRIUMF Ultra Cold Advanced Neutron Source

℀TRIUMF

TRIUMF location

TRIUMF site map

℀TRIUMF

UCN project and TUCAN's goals

Search for an electric dipole moment (EDM) of the neutron with a sensitivity below 10⁻²⁷ ecm

- → Build world-leading UCN source
- → Establish UCN user facility

Outline

Introduction on Electric Dipole Moments and Ultra Cold Neutrons

- **Neutron EDM experiment at TRIUMF**
- Status of UCN facility at TRIUMF
- **Preliminary results from first UCN production in Canada**
- **Design of new world leading UCN source at TRIUMF**

Summary

Why are we looking for Electric Dipole Moments?

- non-zero EDM violates ${\mathcal T}$ and ${\mathcal {CP}}$ symmetries
- CP violation in the SM (CKM matrix, θ -term in QCD) not sufficient
- EDMs are a sensitive direct probe of new physics! (and constrain parameter space for new physics models)

Ade e locco

EDMs of fundamental particles, atoms and molecules

- Typical approach is a solesource analysis
- Additional limits on EDMs of various systems improve constraints in global analysis
- → Neutron EDM limit from ¹⁹⁹Hg results: d_n < 1.6e-26 ecm!</p>

	upper limit (95% CL) [10 ⁻²⁸ ecm]	SM pred. [10 ⁻²⁸ ecm]
neutron	360	~ 10 ⁻³ - 10 ⁻⁴
¹⁹⁹ Hg	0.074	~ 10 ⁻⁶
¹²⁹ Xe	6.6	~ 10 ⁻⁶

Example:

$$d_{\text{atom}} = \underbrace{\kappa_S S}_{k_T C_T} + k_S C_S + \overline{\eta_e} d_e + \overline{\rho_p} d_p + \rho_n d_n + \text{h.o.}$$
$$\searrow S \approx a_0 \overline{g}_{\pi}^{(0)} + a_1 \overline{g}_{\pi}^{(1)}$$

Baker, PRL 97, 131801 (2006)

Graner, PRL 116, 161601 (2017)

McKellar, Phys. Lett. B **197**, 556 (1987)

Donoghue, Phys. Lett. B **196**, 196 (1987)

Shushkov, Sov. Phys. JETP 60, 873 (1984)

Rosenberry, PRL 86, 22 (2001)

[Pendlebury, Phys. Rev. D 92, 092003 (2015)]

			d_e (e cm)	C_S	C_T	$ar{g}^{(0)}_{\pi}$,	$ar{g}^{(1)}_{\pi}$,	$\bar{d}_n^{\rm sr}$ (e cm)
	Current limits (95%)	5.4×10^{-27}	4.5×10^{-7}	2×10^{-6}	8×10^{-9}	1.2×10^{-9}	12×10^{-23}
System	Current (e cm)	Projected			Projected	sensitivity		
ThO	5×10^{-29}	5×10^{-30}	4.0×10^{-27}	3.2×10^{-7}				
Fr		$d_e < 10^{-28}$	2.4×10^{-27}	1.8×10^{-7}				
¹²⁹ Xe	3×10^{-27}	3×10^{-29}			3×10^{-7}	3×10^{-9}	1×10^{-9}	5×10^{-23}
Neutron/Xe	2×10^{-26}	$10^{-28}/3 \times 10^{-29}$			1×10^{-7}	1×10^{-9}	4×10^{-10}	2×10^{-23}
Ra		10^{-25}			5×10^{-8}	4×10^{-9}	1×10^{-9}	6×10^{-23}
Ra		10^{-26}			1×10^{-8}	1×10^{-9}	3×10^{-10}	2×10^{-24}
Neutron/Xe/Ra		$10^{-28}/3 \times 10^{-29}/10^{-27}$			6×10^{-9}	9×10^{-10}	3×10^{-10}	1×10^{-24}

Chupp & Ramsey-Musolf,

Neutron electric dipole moment – Experimental history

- Early measurements using neutron beams
- Revival of beam experiments?
 Piegsa, Phys. Rev. C 88, 045502 (2013)
- State-of-the-art based on stored neutrons:
 - → Ultra-Cold Neutrons

Ultra Cold Neutrons

Properties

- Kin. Energy < 300 neV
- Wavelength

~ 50 nm

Velocity

~ 5 m/s

Interactions

- Gravity 100 neV/m
- (Electro)Magnetic 60 neV/T
- Weak

•

 $n \longrightarrow p + e + \overline{\nu}_e$

- → observation times of order $\tau \sim 880$ s
- Strong

$$V_F = \frac{2\pi\hbar^2}{m} \sum_i N_i b_i$$

Material	V _F [neV]
Aluminium	54
Copper	168
Stainless steel	188
⁵⁸ Ni	350
SiO ₂	90
Al ₂ O ₃	146
Perfluoro Polyether (Fomblin Oil)	106

Measuring a neutron EDM - Ramsey's method of separated oscillating fields

Neutron EDM experiment at TRIUMF

- State-of-the-art magnetic field: MSR and self-shielded coils, $B_0 \sim 1 \text{ uT}$
- Double EDM cell
- SERF magnetometers
- Simultanous spin detection

Magnetics and related systematic effects: **B. Franke's talk**

UCN production at TRIUMF – Spallation neutrons & superfluid helium

300 K

20-80 K

Features

- Combination of spallation neutron source and superfluid helium converter
- Small distance btw target and He-II
- Long UCN storage lifetimes in He-II

He-II temperature [K]	Storage time [s]
0.8	600
1.2	36

Golub & Pendlebury Phys. Lett. A **53**, 133 (1975) Phys. Lett. A **62**, 337 (1977)

UCN production in superfluid helium and limitations: **J. Martin's talk**

- Warm moderator D₂O
- Cold moderator ice D₂O, LD₂
- UCN converter superfluid He < 1.6 K

UCN beamline at TRIUMF

First beam on target on November 22nd 2016

Prototype UCN source

Masuda et. al., Phys. Rev. Lett. **108**, 134801 (2012)

Vertical UCN source developed at RCNP

- 3He fridge with heat-exchanger
- Cooling stages:
 - 4 K 60 L liquid natural helium
 - 1 K ⁴He pot (pumping natural helium)
 - 0.7 K ³He pot and heat exchanger
 - → Superfluid helium temperature ~ 0.8 K
 - → UCN lifetime in source ~ 81 sec
 - UCN detected ~ 280000 UCN (400 MeV, 1 uA, 8 L He-II, 240s irradiation)

2016 Oct	Move to TRIUMF
2016 Nov-Jan	Safety modifications
2017 Jan–Apr	Installation

F. Kuchler, CAP 2018

Prototype UCN source

UCN area top view

Masuda et. al., Phys. Rev. Lett. 108, 134801 (2012)

Installation of the prototype UCN source Jan-Mar 2017

F. Kuchler, CAP 2018

November 13th 2017 - First UCN production in Canada

He-II

Measurement program

- UCN source characterization
- Simulation benchmark (MCNP, PENTrack)
- UCN guide transmission
- Detector comparison

UCN production results

Production and UCN lifetime in source

- Initial UCN lifetime in source: 39 s (likely limited by UCN valve)
- UCN lifetime in source degraded to 28 s (18 days) (likely contamination due to measurements)

UCN production vs proton current

- ➔ Proton current on target: up to 10 uA
- → 300.000 UCN @ 10 uA proton current, 60 s irradiation
- → 30s irradiation time to avoid heating:
 - production increases linearly

UCN production results

Varying superfluid helium temperature

Ongoing analysis

- UCN transmission of components
- Detector comparison (³He vs ⁶Li)
- Characterize ³He detector for normalization

Next run in fall 2018

- UCN transmission of components
- UCN storage properties of gate valves

• ...

- Successfully demonstrated UCN production with prototype source at TRIUMF
- Testing of critical parts of the new UCN source
- Benchmark for new source simulations

Design of a new world-leading UCN source

Improvements

- Cold moderator upgrade: LD₂
- Increased proton beam current (40 uA)
- Cooling power of 10 W @1.15 K
- UCN bottle materials (Be-Al alloys, Mg-Al alloys, Be)
- Optimized:
 - Geometry
 - LD₂ volume
 - Production vs heat load

Conceptual Design Report

CONCEPTUAL DESIGN REPORT FOR THE NEXT GENERATION UCN SOURCE AT TRIUMF

THE TUCAN COLLABORATION - MARCH 29, 2018

- Review at KEK April 2018
- Technical design started
- Decision for ³He fridge (vs direct pumping)
- → Expectation: 10⁷ UCN/s
- → EDM sensitivity 10⁻²⁷ ecm (400 days)

Draft design of a new world-leading UCN source

New UCN source installation potentially shifted by one year due to shutdown

Calendar Year	2018	2019	2020	2021		
Vertical Cryostat				Remove		
LD2 Subsystem						
He Subsystem inc. Cryostat						
Shielding						
Source and Moderator Tail assy						
He Services incl. Transfer line				UCN Production		
nEDM						
UCN Guidance (Source)						
System						
Legend:	Concept D	etail Design Buil	d Install	Test Operate		
				Ch. Gibson		

Summary

- Installation of prototype UCN source in 2017 shutdown
- UCN beamline (and kicker) ready
- First UCN production Nov. 2017
- Conceptual design report/review for new UCN source
- Neutron EDM project received CAD 15.7 million infrastructure funds (CFI)
- Neutron EDM conceptual design report by Spring 2019
 - → Sensitivity goal of 10⁻²⁷ ecm within 400 days
- New UCN source commissioning in 2021

Ultra-cold neutron research heats up at UWinnipeg with \$15.7 million

Posted on: 10/12/17 | Author: Communications | Categories: All Posts, Feature Story, Research

F. Kuchler, CAP 2018

TUCAN collaboration

Thank you! Merci!

S. Ahmed^{3,4}, E. Altiere², T. Andalib^{3,4}, C. Bidinosti^{3,8}, J. Birchall⁴, M. Das^{3,4}, C. Davis⁵, B. Franke⁵, P. Giampa⁵, M. Gericke⁴, S. Hansen-Romu^{3,4}, K. Hatanaka⁶, T. Hayamizu², B. Jamieson³, D. Jones², S. Kawasaki¹, T. Kikawa^{5,6,1}, M. Kitaguchi¹⁰, W. Klassen^{3,4}, A. Konaka^{5,8}, E. Korkmaz⁷, F. Kuchler⁵, M. Lang³, T. Lindner^{5,3}, K. Madison², Y. Makida¹, J. Mammei⁴, R. Mammei^{3,5}, J. Martin³, R. Matsumiya⁵, E. Miller², K. Mishima¹, T. Momose², T. Okamura¹, S. Page⁴, R. Picker^{5,9}, E. Pierre^{6,5}, W. Ramsey⁵, L. Rebenitsch^{3,4}, W. Schreyer⁵, H. Shimizu¹⁰, S. Sidhu^{5,9}, J. Sonier⁹, I. Tanihata⁶, S. Vanbergen⁵, W.T.H. van Oers^{4,5}, Y. Watanabe¹

¹KEK, Tsukuba, Ibaraki, Japan
 ²The University of British Columbia, Vancouver, BC, Canada
 ³The University of Winnipeg, MB, Canada
 ⁴The University of Manitoba, MB, Canada
 ⁵TRIUMF, Vancouver, Canada
 ⁶RCNP, Osaka, Japan
 ⁷The University of Northern BC, Prince George, BC, Canada
 ⁸Osaka University, Osaka, Japan
 ⁹Simon Fraser University, Burnaby, BC, Canada
 ¹⁰Nagoya University, Nagoya, Japan

<u>Spokespeople:</u> J. Martin (Canada), K. Hatanaka (Japan

Backup slides

Neutron sources

Pla	ce	Neutrons	UCN converter	Status	
ILL		Reactor, CN	Turbine	Running	
J-PA	ARC	Spallation	Doppler shifter	Running	
ILL	SUN-2	Reactor, CN	Superfluid He	Running	
ILL	SuperSUN	Reactor, CN	Superfluid He	Future	
RC	NP/KEK/TRIUMF	Spallation	Superfluid He	Installing/Future	
Gat	china WWR-M	Reactor	Superfluid He	Future	
LAN	NL	Spallation	Solid D2	Running/Upgrading	
Mainz		Reactor	Solid D2	Running	
PSI		Spallation	Solid D2	Running	
NSCU Pulstar		Reactor	Solid D2	Installing	
FRM-II Rea		Reactor	Solid D2	Future	
	KEK-TRIUMF combination of spallation target and superfluid helium is unique. Upgrade schedule is competitive with other leading sources of UCN.				

UCN target

- UCN target: tantalum-clad tungsten.
- Installed during Winter 2016.
- Water cooling; 14kW of heat to remove (at final power)
 - Need to deal with activated water. Finishing commissioning water package now.
- Have system for remotely removing UCN target

Prototype UCN source and pumps

Cooldown test of the prototype UCN source at TRIUMF

- Full cooling test in April 2017
- Final temperature 0.92 K
- 8 L of liquid He-II condensated

Shortage of liquid helium delayed condensation:

- TRIUMF helium liquefier plant now upgraded with liquid nitrogen
- → Liquid helium supply of 50 L/hr

UCN kicker and beam timing structure

 $\frac{\text{TRIUMF beam structure:}}{\text{no beam for 50-100 } \mu\text{s}}$

Kicker ramps up during beam notch (200 A/50 μ s)

- → kicks every 3rd pulse to BL1U (UCN)
- → average of 40 µA for UCN
- → currently limited to 1 µA (every 120th pulse)

Timing of target irradiations:

- Balance of UCN density accumulation and heat load
- Planning target irradiation time of \sim 60 s

Installation of the prototype UCN source Jan-March 2017

UCN detection for the neutron EDM experiment

High rate counting (>1.3MHz) and UVT efficiency stability (0.05% / hour) lightguides are required

- Detection via neutron capture in 6Li: 6 Li + n \rightarrow 3 H(2.73MeV) + α (2.05MeV)
- Detector was well characterized by beam test at PSI UCN beamline
- Increase the UCN statistics by measuring both spin state simultaneously
- Increase visibility due to less depolarization while storing above analyzer foil

New UCN source bottle materials

Material	Composition (wt%)	Wall thickness	Effect on P/C
Aluminium	100 Al	2 mm	
Al6061	95.85 Al, 1.2 Mg, 0.8 Si, 0.7 Fe, 0.4 Cu 0.35 Cr, 0.25 Zn, 0.15 Mn, 0.15 Ti	2 mm	-5 %
Beryllium	100 Be	1.5 mm	+90 %
Magnox AL80	99.2 Mg, 0.8 Al, 0.004 Be	4 mm	+15 %
AZ80	90.85 Mg, 8.5 Al, 0.5 Zn, 0.15 Mn	2.5 mm	+40 %
AlBeCast 910	57 Be, 38 Al, 3.4 Ni, 0.5 Si, 0.3 Fe, 0.24 O	3 mm	+5 %
BerAlCast 310	60 Be, 36 Al, 2.5 Ag, 0.25 Si, 0.2 Co, 0.2 Ge, 0.2 Fe	1.5 mm	-5 %
AlBeMet 162	62 Be, 38 Al	2 mm	+50 %