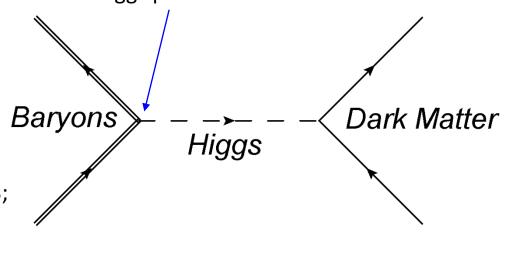
Status of Higgs Portal Dark Matter

Rainer Dick Department of Physics & Engineering Physics

- Update on Higgs-nucleon coupling
- Scalar Higgs portal dark matter
- Vector Higgs portal dark matter
- CP even fermionic Higgs portal dark matter
- CP odd fermionic Higgs portal dark matter
- Mixed fermionic Higgs portal dark matter
- Conclusions



The Higgs-nucleon coupling $g_{hN}h\overline{N}N$

Dark matter creation (early universe, colliders)

The Higgs-nucleon coupling is critical for Higgs portal models

Shifman, Vainshtein & Zakharov 1978; Ellis, Olive & Savage 2008; Goudelis, Hermann & Stål 2013; F.S. Sage & RD 2015; Hoferichter et al. 2017.

Dark matter annihilation (indirect search)

$$g_{hN}v_h = \frac{7}{9} \left(1 + \frac{m_s y_N}{m_u + m_d} \right) \sigma_{\pi N} + \frac{2}{9} m_N = \frac{7}{9} \sum_{q = u,d,s} m_N f_q^N + \frac{2}{9} m_N = m_N f_N$$

The Higgs-nucleon coupling $g_{hN}h\overline{N}N$

$$g_{hN}v_h = \frac{7}{9} \left(1 + \frac{m_s y_N}{m_u + m_d} \right) \sigma_{\pi N} + \frac{2}{9} m_N = \frac{7}{9} \sum_{q=u,d,s} m_N f_q^N + \frac{2}{9} m_N = m_N f_N$$

Lattice calculations, chiral perturbation theory, and sum rules indicate $0 \le y_N \le 0.1$ and $\sigma_{\pi N} \le 55$ MeV.

This yields the very conservative estimate

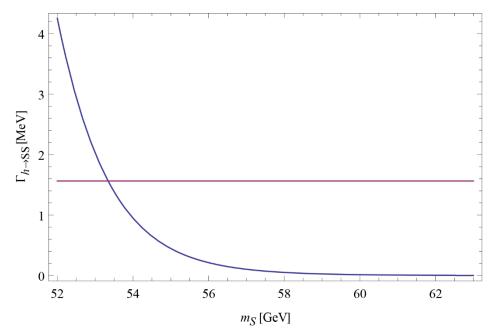
$$210 \text{ MeV} \le g_{hN} v_h \le 310 \text{ MeV}$$

(comparable to range found by Alarcón et al. from pion-nucleon scattering) We plot nuclear recoil cross sections for $g_{hN}v_h=210~{
m MeV}$. Rationale: Most cautious approach to mass exclusion limits from the direct search experiments PandaX-II, LUX and XENON1T.

Scalar Higgs portal dark matter:

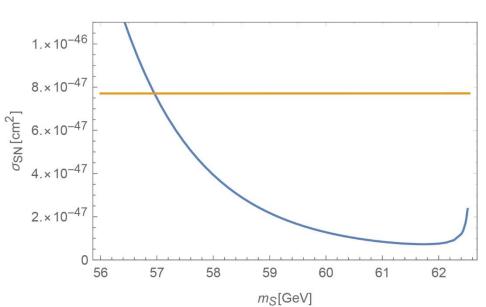
The coupling $g_S S^2 H^+ H$ between a scalar electroweak singlet S and the Higgs doublet H yields in unitary gauge

$$H = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_h + h \end{pmatrix}$$

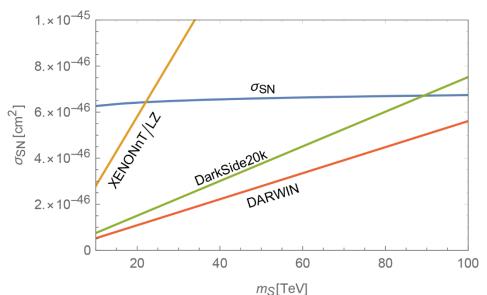

the minimal renormalizable addition to the Standard Model with an additional stable particle,

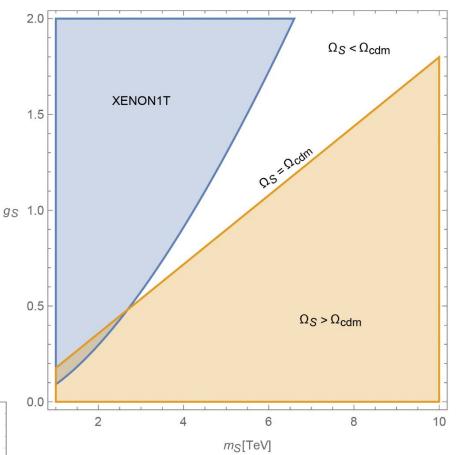
$$\mathcal{L}_{S} = -\frac{1}{2}\partial S \cdot \partial S - \frac{1}{2}m_{S}^{2}S^{2} - \frac{\lambda_{S}}{4}S^{4} - g_{S}v_{h}hS^{2} - \frac{g_{S}}{2}h^{2}S^{2}$$

Silveira & Zee 1985; McDonald 1994; Bento *et al.* 2000; Burgess, Pospelov & ter Veldhuis 2001;...


"Low mass region" = resonance region $m_S \lesssim m_h/2 = 62.5 \text{ GeV}$:

Scalar Higgs portal dark matter with $m_S < m_h/2$ is constrained by limits from ATLAS and CMS on the branching ratio into invisible Higgs decays $\mathcal{B} \leq 0.24$,




and by the exclusion limits from PandaX-II, LUX and XENON1T on nucleon recoil cross sections. XENONnT and LZ will have the potential to exhaust the resonance region.

RD, arXiv:1804.02604 [hep-ph]

Scalar Higgs portal matter in the high mass region is constrained by the direct search experiments PandaX-II, LZ and XENON1T to $m_S \gtrsim 2.7 \text{ TeV}$ (or $m_S \gtrsim 4.5 \text{ TeV}$ for $g_{hN}v_h = 289 \text{ MeV}$).

It should be detected or ruled out by DarkSide-20k and DARWIN

arXix:1804.02604 [hep-ph]

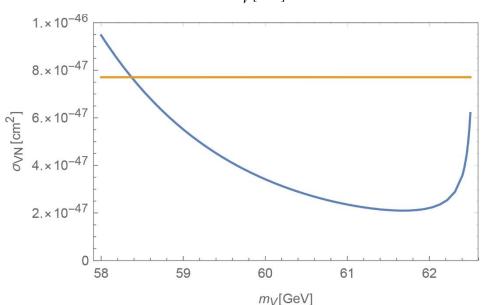
Vector Higgs portal dark matter:

The coupling $g_V V^\mu V_\mu H^+ H$ between an electroweak singlet vector field V_μ and the Higgs doublet H yields in unitary gauge the vector Higgs portal addition to the Standard Model

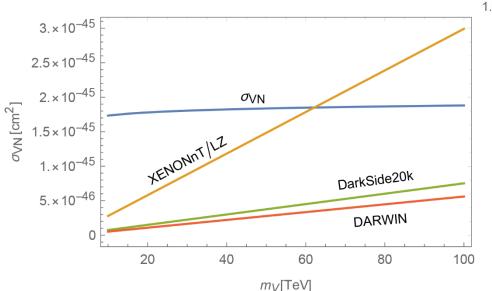
$$\mathcal{L}_{V} = -\frac{1}{4}V^{\mu\nu}V_{\mu\nu} - \frac{1}{2}m_{V}^{2}V^{\mu}V_{\mu} - \frac{\lambda_{V}}{4}(V^{\mu}V_{\mu})^{2} - g_{V}v_{h}hV^{\mu}V_{\mu} - \frac{g_{V}}{2}h^{2}V^{\mu}V_{\mu}$$

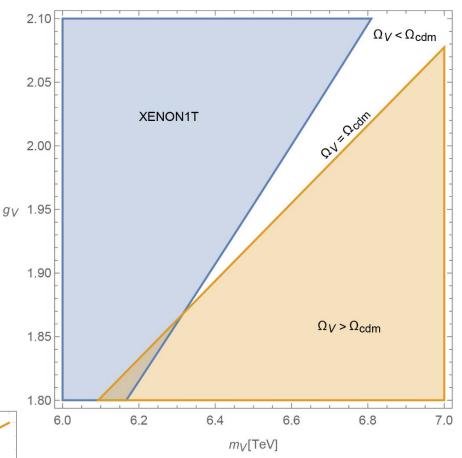
$$V_{\mu\nu} = \partial_{\mu}V_{\nu} - \partial_{\nu}V_{\mu}$$

Lebedev, Lee & Mambrini 2012; Djouadi, Lebedev, Mambrini & Quevillon 2012;...


"Low mass region" = resonance region $m_V \lesssim m_h/2 = 62.5 \text{ GeV}$:

Vector Higgs portal dark matter with $m_V < m_h/2$ is constrained by limits from ATLAS and CMS on the branching ratio into invisible Higgs decays $\mathcal{B} \leq 0.24$,


 $\frac{4}{3}$ $\frac{1}{2}$ $\frac{1}$


and by the exclusion limits from PandaX-II, LUX and XENON1T on nucleon recoil cross sections. XENONnT and LZ will have the potential to exhaust the resonance region.

RD, arXiv:1804.02604 [hep-ph]

Vector Higgs portal matter in the high mass region is constrained by the direct search experiments PandaX-II, LZ and XENON1T to $m_V \gtrsim 6.4$ TeV (or $m_V \gtrsim 11.7$ TeV for $g_{hN}v_h = 289$ MeV).

It should be detected or ruled out by DarkSide-20k and DARWIN.

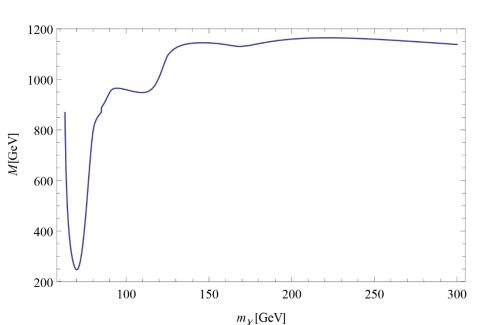
arXix:1804.02604 [hep-ph]

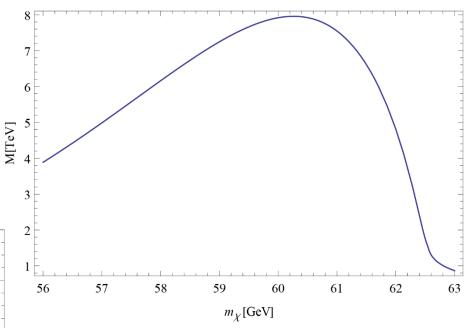
Electroweak singlet fermions χ can couple through a Higgs portal

$$\mathcal{H}_{\chi h} = \frac{1}{M} \bar{\chi} \cdot \Gamma \cdot \chi \left(H^{+}H - \frac{v_{h}^{2}}{2} \right) = \frac{1}{M} \bar{\chi} \cdot \Gamma \cdot \chi \left(v_{h}h + \frac{h^{2}}{2} \right)$$

$$\Gamma = a + ib\gamma_{5}$$

This can arise through a scalar mediator ϕ

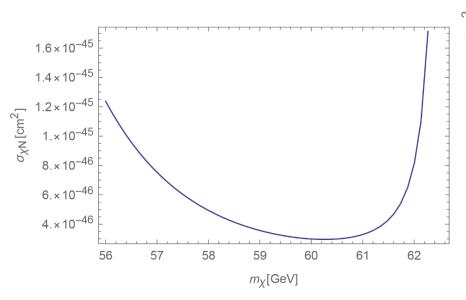

$$\mathcal{H}_{\phi} = \frac{1}{2} m_{\phi}^2 \phi^2 + g \phi \bar{\chi} \cdot \Gamma \cdot \chi + \lambda \phi \left(H^+ H - \frac{v_h^2}{2} \right)$$

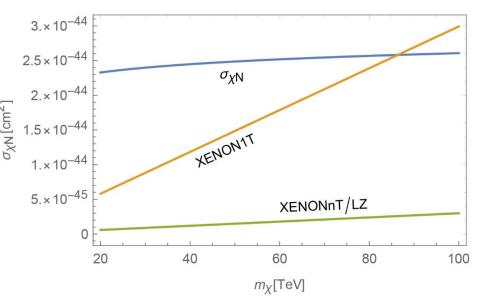

with $M=-m_{\phi}^2/g\lambda$. Note that $|M|< m_{\phi}$ if $m_{\phi}<|g\lambda|$, i.e. the coupling scale M in itself does not necessarily set the scale of new physics beyond the minimal fermionic Higgs portal.

The CP even model

$$\mathcal{L}_{\chi} = \bar{\chi} (i \gamma^{\mu} \partial_{\mu} - m_{\chi}) \chi - \frac{v_h}{M} h \bar{\chi} \chi - \frac{1}{2M} h^2 \bar{\chi} \chi$$

would require coupling scales in the TeV range:

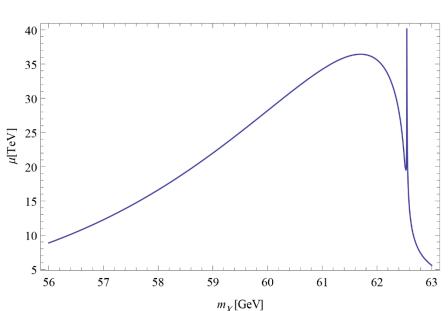

However, the CP even model

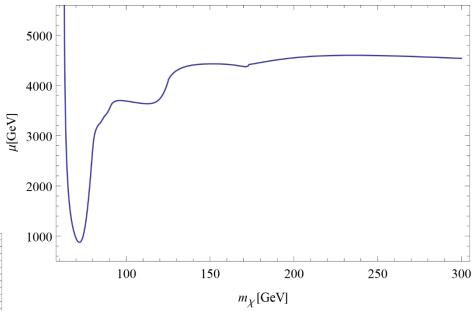

$$\mathcal{L}_{\chi} = \bar{\chi} (i \gamma^{\mu} \partial_{\mu} - m_{\chi}) \chi - \frac{v_h}{M} h \bar{\chi} \chi - \frac{1}{2M} h^2 \bar{\chi} \chi$$

yields nucleon recoil cross sections

$$\sigma_{\chi N} = \frac{g_{hN}^2 v_h^2}{\pi M^2 m_h^4} \left(\frac{m_{\chi} m_N}{m_{\chi} + m_N} \right)^2$$

which are too large:

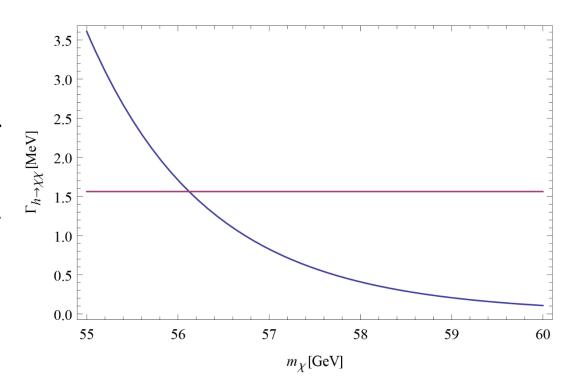




The CP odd model

$$\mathcal{L}_{\chi} = \bar{\chi} (i \gamma^{\mu} \partial_{\mu} - m_{\chi}) \chi - i \frac{v_h}{\mu} h \bar{\chi} \gamma_5 \chi - \frac{i}{2\mu} h^2 \bar{\chi} \gamma_5 \chi$$

would requires larger coupling scales than the CP even model:


The CP odd model

$$\mathcal{L}_{\chi} = \bar{\chi} (i \gamma^{\mu} \partial_{\mu} - m_{\chi}) \chi - i \frac{v_h}{\mu} h \bar{\chi} \gamma_5 \chi - \frac{\iota}{2\mu} h^2 \bar{\chi} \gamma_5 \chi$$

is constrained by the ATLAS and CMS limits on the branching ratio into invisible Higgs decays.

The invisible decay width for the CP odd model is

$$\Gamma_{h \to \chi \chi} = \frac{v_h^2}{8\pi \mu^2} \sqrt{m_h^2 - 4m_\chi^2}$$

However, the CP odd model

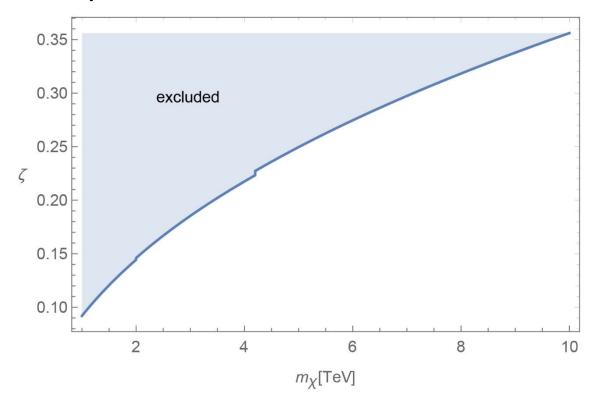
$$\mathcal{L}_{\chi} = \bar{\chi} (i \gamma^{\mu} \partial_{\mu} - m_{\chi}) \chi - i \frac{v_h}{\mu} h \bar{\chi} \gamma_5 \chi - \frac{i}{2\mu} h^2 \bar{\chi} \gamma_5 \chi$$

yields nucleon recoil cross sections

$$\sigma_{\chi N} = \frac{g_{hN}^2 v_h^2}{\pi \mu^2 m_h^4} \left(\frac{m_{\chi} m_N}{m_{\chi} + m_N} \right)^2 \frac{\beta_{\chi}^2}{2}$$

which are too small to be tested by the direct search experiments. The difference between the CP odd and even couplings arises from Even:

$$\frac{1}{2} \sum_{SS'} |\bar{u}(\boldsymbol{p}, s') \cdot u(\boldsymbol{k}, s)| = 2(m_{\chi}^2 - p \cdot k) \rightarrow 4m_{\chi}^2$$


Odd:

$$\frac{1}{2} \sum_{s,s'} |\overline{u}(\boldsymbol{p}, s') \gamma_5 u(\boldsymbol{k}, s)| = -2(m_{\chi}^2 + p \cdot k) \rightarrow (\boldsymbol{p} - \boldsymbol{k})^2$$

The fermionic model with a mixed CP even and odd Higgs portal

$$\mathcal{H}_{\chi h} = \bar{\chi} \left(\frac{\zeta}{M} + \frac{i}{\mu} \sqrt{1 - \zeta^2} \gamma_5 \right) \chi \left(H^+ H - \frac{v_h^2}{2} \right)$$

is constrained by the limits from PandaX-II, LUX and XENON1T

RD, arXiv:1804.02604 [hep-ph]. Allowed values of ζ are further reduced by a factor 0.727 if $g_{hN}v_h=289$ MeV.

Conclusion: Status of minimal electroweak singlet Higgs portal dark matter from thermal freeze-out

Scalar	$57~{\rm GeV} \lesssim m \lesssim m_h/2~{\rm or}~m \gtrsim 2.7~{\rm TeV}$ ($m \gtrsim 4.5~{\rm TeV}$), will be further constrained by XENONnT and LZ.	Can be tested by DarkSide-20k and DARWIN.
Vector	$58~{\rm GeV} \lesssim m \lesssim m_h/2~{\rm or}~m \gtrsim 6.4~{\rm TeV}$ ($m \gtrsim 11.7~{\rm TeV}$), will be further constrained by XENONnT and LZ.	Can be tested by DarkSide-20k and DARWIN.
Fermion, CP even	Appears to be ruled out by ATLAS and CMS at low masses, and by PandaX-II, LUX and XENON1T at high masses.	
Fermion, CP odd	Recoil cross sections below the neutrino floor.	Constrained by ATLAS and CMS to $m \gtrsim 56$ GeV; also needs further exploration at colliders.
Fermion, mixed	CP even part will be further constrained by direct search experiments.	

